
This Week: Sensing Sound 

Your ability to produce and make 
sense of sounds are truly 
remarkable. The difference between 
a “t” sound and a “d” sound is a few 
hundredths of a second difference in 
the timing of one part of the sound, 
but you can easily distinguish the 
two. We sense sound with our ears, 
which are on the sides of our heads. 
But other animals sense sound quite 
differently: animals that live in water 
don’t need external ears, owls have 
ears on the front of their faces, and 
spiders sense sounds with their legs. 
We’ll explore the remarkable ways 
that animals—including humans—
sense sounds and use them to 
analyze the world around them.

A warmup:
Why, and where, do we have ears?

When a wave hits a boundary between two 
media, some (or most) of the energy is reflected.
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SYNTHESIS 16.1 Standing-wave modes

There are only two sets of frequency/wavelength relationships for standing-wave modes.
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We show the
first two modes;
the pattern
continues.

All three systems have the same relationships
for wavelength and frequency.

Same mode diagram

For waves on a string, v is
the wave speed on the string.

For sound waves in tubes,
v is the speed of sound.

Higher-order modes are multiples of the
lowest (fundamental) frequency.

The mode number
m can be any
positive integer.
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of 2L

Open-closed tubes
have only odd-
numbered modes.
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PROBLEM-SOLVING 
A P P R O A C H  1 6 . 1 

We can use the same general approach for any standing 
wave.

STRATEGIZE Standing waves occur whenever a wave is 
confined between two boundaries. In this case, only cer-
tain modes, with particular wavelengths and frequencies, 
can exist.

PREPARE

 ■ For sound waves, determine what sort of pipe or tube you 
have: open-open, closed-closed, or open-closed.

 ■ For string or light waves, the ends will be fixed points.
 ■ For other types of standing waves, such as electromagnetic 

or water waves, the mode diagram will be similar to one of 
the cases outlined in Synthesis 16.1. You can then work by 
analogy with waves on strings or sound waves in tubes.

Standing waves
 ■ Determine known values: length of the tube or string, 

frequency, wavelength, positions of nodes or antinodes.
 ■ It may be useful to sketch a visual overview, including a 

picture of the  relevant mode.

SOLVE Once you have determined the mode diagram, you 
can use the appropriate set of equations in Synthesis 16.1 
to find the wavelength and frequency. These equations 
work for any type of wave.

ASSESS Does your final answer seem reasonable? Is there 
another way to check on your results? For example, the 
frequency times the wavelength for any mode should equal 
the wave speed—you can check to see that it does.

The eardrum, which transmits vibrations to the sensory organs of 
your ear, lies at the end of the ear canal. As FIGURE 16.20 shows, 
the ear canal in adults is about 2.5 cm in length. What frequency 
standing waves can occur within the ear canal that are within the 
range of human hearing? The speed of sound in the warm air of 
the ear canal is 350 m/s.

STRATEGIZE The ear canal acts as a tube that supports standing 
sound waves.

PREPARE We proceed according to the steps in Problem-Solving 
Approach 16.1. We can treat the ear canal as an open-closed tube: 
open to the atmosphere at the external end, closed by the eardrum 
at the other end. The possible standing-wave modes appear as in 
Figure 16.19c. The length of the tube is 2.5 cm.

Resonances of the ear canal EXAMPLE 16.6 

Continued

Ear canal

EardrumExterior
opening
of ear 2.5 cm

FIGURE 16.20 The anatomy of the ear.
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The ear takes 
sound from the air 
and transmits the 
vibration into the 
watery medium in 

the cochlea.

LOOKING AHEAD ▶▶

Traveling Waves
Shaking one end of the spring up and down 
causes a disturbance—a wave—to travel 
along the spring.

Describing Waves
A wave moves out from the vibrating rod. 
The shape of the wave is sinusoidal, a form 
we’ve seen for oscillations.

You’ll learn the wave model that describes 
phenomena ranging from light waves to 
earthquake waves.

The terms and equations used to describe 
waves are closely related to those for 
oscillations, as you’ll see.

You’ll learn to calculate intensity, a measure 
of how spread out or concentrated a wave’s 
energy is.

Energy and Intensity
All waves carry energy. The energy of a laser 
beam can be used to burn away unwanted parts 
of the cornea in eye surgery.

Traveling Waves  
and Sound

LOOKING BACK ◀◀

The terms you learned—such as period, 
frequency, and amplitude—apply to 
descriptions of wave motion as well.

Simple Harmonic Motion
In Chapter 14, you learned to use the  
terminology of simple harmonic motion  
to describe oscillations.

STOP TO THINK

A wooden toy hangs from a spring. 
When you pull it down and release it, 
it reaches the highest point of its motion 
after 1.0 s. What is the frequency of the 
oscillation?
A. 2.0 Hz
B. 1.5 Hz
C. 1.0 Hz
D. 0.5 Hz

 GOAL To learn the basic properties of traveling waves.

This bat’s ears are much more  
prominent than its eyes. It appears 
that hearing is a much more  
important sense than sight for bats. 
How does a bat use sound waves to 
locate prey?
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More area means more 
sound power captured

Power captured = Intensity x Area

A difference in arrival time 
lets you determine location.

Where are the ears?



Locating Sound

No need for external ears. It’s All In Your Head.

Spiders don’t have external ears, but their legs are very sensitive to vibrations. Some spiders can sense a vibration with an amplitude 1/10 the diameter of an atom.

OK, now for some physics principles: 

Properties of sound waves 
The decibel scale 
Standing waves 

Harmonics 
Formants

Frequency: Cycles, or oscillations, per second

Pitch is to frequency as color is to wavelength

Symbol for frequency: f

200 Hz

400 Hz

800 Hz
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Notice that the snapshot graphs show the steeper edge of the wave on the right 
but the history graph has the steeper edge on the left. As the wave moves toward the 
dot, the steep leading edge of the wave causes the dot to rise quickly. Later, the shal-
lower trailing edge causes the dot to descend more slowly. On the history graph, as 
on any displacement-versus-time graph, earlier times are to the left and later times 
are to the right. The rapid rise when the wave hits the dot is at an early time and so 
appears on the left side of the Figure 15.7b history graph, whereas the slow descent 
of the dot occurs later and so appears to the right side of the graph. This reversal will 
not be present in all cases, though; you’ll need to consider each situation individually.

The Mathematical Description of Sinusoidal Waves
Waves can come in many different shapes, but for the mathematical description of 
wave motion we will focus on a particular shape, the sinusoidal wave. This is the 
type of wave produced by a source that oscillates with simple harmonic motion.  
A loudspeaker cone that oscillates in SHM radiates a sinusoidal sound wave.

The pair of snapshot graphs in FIGURE 15.8 shows two successive views of a string car-
rying a sinusoidal wave, revealing the motion of the wave as it moves to the right. We 
define the amplitude A of the wave to be the maximum value of the displacement. 
The  crests of the wave—the high points—have displacement ycrest = A, and the 
troughs—the low points—have displacement ytrough = -A. Because the wave is pro-
duced by a source undergoing SHM, which is periodic, the wave is periodic as well. As 
you move from left to right along the wave frozen in time in the top snapshot graph of 
Figure 15.8, the disturbance repeats itself over and over. The distance spanned by one 
cycle of the motion is called the wavelength of the wave. Wavelength is symbolized 
by l (lowercase Greek lambda) and, because it is a length, it is measured in units of 
meters. The wavelength is shown in Figure 15.8 as the distance between two crests, 
but it could equally well be the distance between two troughs. As time passes, the 
wave moves to the right; comparing the two snapshot graphs in Figure 15.8 makes 
this motion apparent.
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The wave moves to
the right. The shape
stays the same.
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The wavelength l is the distance
between successive crests.
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FIGURE 15.8 Snapshot graphs show the 
motion of a sinusoidal wave.

KEY CONCEPT FIGURE 15.7 Constructing a history graph.
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 STOP TO THINK 15.3 The figure to the right is a snapshot graph of a wave moving 
to the left. Following the approach shown in Figure 15.7, which graph below is the 
correct history graph for the point in the snapshot graph marked by the dot?
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Longer wavelengths have lower frequencies.

Increasing speed increases wavelength.

λ =
v
f

Here’s an equation to bring this all together:

You can locate the source of a sound with an uncertainty 
that is proportional to the wavelength:
Smaller wavelength means less uncertainty.

Discussion Question
Would you expect owls to have their most sensitive 
hearing at high frequencies or low frequencies?

You can locate the source of a sound with an uncertainty 
that is proportional to the wavelength:
Smaller wavelength means less uncertainty.

Barn owls are especially sensitive to frequencies around 
about 5 kHz—quite a high frequency. This corresponds 
to a wavelength of 6.8 cm, about 2.5 inches.

Discussion Question
Would you expect bats, which catch smaller prey, 
to rely on higher or lower frequencies than owls?

A little brown bat 
(Myotis lucifugus) 
emits echolocation 
pulses with a 
frequency of about 
45 kHz, well above 
the range of human 
hearing. This 
corresponds to a 
wavelength of 0.75 
cm, about ⅓ inch.



It’s Different in the Water

Bottlenose dolphins use echolocation pulses that peak at about 100 kHz, 
higher than typical for bats. 

Discussion Question
Why might you expect these water-dwelling creatures to use higher 
frequencies than air-living bats?

Sound intensity levels
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difference in perceived loudness is much less than the actual difference in intensity, 
the sound intensity level is measured on a logarithmic scale. In this section we will 
explain what this means. The units of sound intensity level (i.e., of loudness) are 
decibels, a word you have likely heard.

The Decibel Scale
There is a lower limit to the intensity of sound that a human can hear. The exact value 
varies among individuals and varies with frequency, but an average value for the 
lowest-intensity sound that can be heard in an extremely quiet room is

I0 = 1.0 * 10-12 W/m2

This intensity is called the threshold of hearing.
It’s logical to place the zero of our loudness scale at the threshold of hearing. All 

other sounds can then be referenced to this intensity. To create a loudness scale, we 
define the sound intensity level, expressed in decibels (dB), as

 b = (10 dB) log10 a I
I0
b  (15.14)

 Sound intensity level in decibels for a sound of intensity I

b is the lowercase Greek letter beta. The decibel is named after Alexander Graham 
Bell, inventor of the telephone. Sound intensity level is dimensionless, since it’s 
formed from the ratio of two intensities, so decibels are actually just a name to remind 
us that we’re dealing with an intensity level rather than a true intensity.

Equation 15.14 takes the base-10 logarithm of the intensity ratio I/I0 . As a 
reminder, logarithms work like this:

log10(1000)  =  log10(103)  =  3

If you express a number as a power of 10 c cthe logarithm is the exponent.

Right at the threshold of hearing, where I = I0 , the sound intensity level is

b = (10 dB) log10 
 

a I0

I0
b = (10 dB) log10 (1) = (10 dB) log10 

 

(100) = 0 dB

The threshold of hearing corresponds to 0 dB, as we wanted.
We can find the intensity from the sound intensity level by taking the inverse of 

the log10 function. Recall, from the definition of the base-10 logarithm, that 
10log(x) = x. Applying this to Equation 15.14, we find

 I = (I0)10(b/10 dB) (15.15)

Table 15.3 lists the intensities and sound intensity levels for a number of typical 
sounds. Notice that the sound intensity level increases by 10 dB each time the actual 
intensity increases by a factor of 10. For example, the sound intensity level increases 
from 70 dB to 80 dB when the sound intensity increases from 10-5 W/m2 to 10-4 W/m2. 
A 20 dB increase in the sound intensity level means a factor of 100 increase in intensity; 
30 dB a factor of 1000. We found earlier that sound is perceived as “twice as loud” when 
the intensity increases by a factor of 10. In terms of decibels, we can say that the appar-
ent loudness of a sound doubles with each 10 dB increase in the sound intensity level.

The range of sounds in Table 15.3 is very wide; the top of the scale, 130 dB, rep-
resents 10 trillion times the intensity of the quietest sound you can hear. Vibrations 
of this intensity will injure the delicate sensory apparatus of the ear and cause pain. 
Exposure to less intense sounds also is not without risk. A fairly short exposure to 
120 dB can cause damage to the hair cells in the ear, but lengthy exposure to sound 
intensity levels of over 85 dB can produce damage as well.

TABLE 15.3 Intensity and sound intensity 
levels of common environmental sounds

Sound B (dB) I (W/m2)

Threshold of  
 hearing

 
0

 
1.0 * 10-12

Person breathing,  
 at 3 m

 
10

 
1.0 * 10-11

A whisper, at 1 m 20 1.0 * 10-10

Classroom during  
 test, no talking

 
30

 
1.0 * 10-9

Residential street,  
 no traffic

 
40

 
1.0 * 10-8

Quiet restaurant 50 1.0 * 10-7

Normal conversation, 
 at 1 m

 
60

 
1.0 * 10-6

Busy traffic 70 1.0 * 10-5

Vacuum cleaner,  
 for user

 
80

 
1.0 * 10-4

Niagara Falls,  
 at viewpoint

 
90

 
1.0 * 10-3

Pneumatic hammer,  
 at 2 m

 
100

 
0.010

Home stereo at  
 max volume

 
110

 
0.10

Rock concert 120 1.0

Threshold of  
 pain

 
130

 
10

The loudest animal in the world The 
blue whale is the largest animal in the world, 
up to 30 m (about 100 ft) long, weighing 
150,000 kg or more. It is also the loudest. At 
close range in the water, the 10–30 second 
calls of the blue whale would be intense 
enough to damage tissues in your body. Their 
loud, low-frequency calls can be heard by 
other whales hundreds of miles away.
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Sound B (dB) I (W/m2)

Threshold of  
 hearing

 
0

 
1.0 * 10-12

Person breathing,  
 at 3 m

 
10

 
1.0 * 10-11

A whisper, at 1 m 20 1.0 * 10-10

Classroom during  
 test, no talking

 
30

 
1.0 * 10-9

Residential street,  
 no traffic

 
40

 
1.0 * 10-8

Quiet restaurant 50 1.0 * 10-7

Normal conversation, 
 at 1 m

 
60

 
1.0 * 10-6

Busy traffic 70 1.0 * 10-5

Vacuum cleaner,  
 for user

 
80

 
1.0 * 10-4

Niagara Falls,  
 at viewpoint

 
90

 
1.0 * 10-3

Pneumatic hammer,  
 at 2 m

 
100

 
0.010

Home stereo at  
 max volume

 
110

 
0.10

Rock concert 120 1.0

Threshold of  
 pain

 
130

 
10

The loudest animal in the world The 
blue whale is the largest animal in the world, 
up to 30 m (about 100 ft) long, weighing 
150,000 kg or more. It is also the loudest. At 
close range in the water, the 10–30 second 
calls of the blue whale would be intense 
enough to damage tissues in your body. Their 
loud, low-frequency calls can be heard by 
other whales hundreds of miles away.
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Dogs may have a threshold of hearing of 
1.0x10-13 W/m2, corresponding to -10 dB.

Some animals can do better. Why would you expect Milo to have more sensitive hearing?

Your ears are super sensitive.

This candle 
gives off about 
20 milliwatts 

of light

Your ears are super sensitive.

My phone, 
when it’s on 

speaker mode, 
puts out about 
20 microwatts, 
1/1000 of the 
light power 
from this 
candle.

It’s a good thing we can’t hear them.

120 dB at 1 m
(10x the power of a person shrieking at the top of their lungs)

Standing waves with slinkies

Mode 1

Mode 2

Mode 3

Mode 4



Standing 
Waves 
on 
Strings
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The subscript identifies the mode number; in this case m = 1. For m = 2, the distance 
between nodes is L/2; this means that l2 = L. Generally, for any mode m the wave-
length is given by the equation

L

The simplest standing
wave has one node at
each end, and no more.

The third possible standing
wave has two nodes in addition
to the nodes at the end.

The next possible standing wave 
we can make has an additional 
node in the center.

m  =  1

m  =  2

m  =  3

FIGURE 16.12 The first three possible 
standing waves on a string of length L.

 lm =
2 L
m
  m = 1, 2, 3, 4,g (16.1)

Wavelengths of standing-wave modes of a string of length L

These are the only possible wavelengths for standing waves on the string. A stand-
ing wave can exist on the string only if its wavelength is one of the values given 
by Equation 16.1.

NOTE ▶ Other wavelengths, which would be perfectly acceptable wavelengths 
for a traveling wave, cannot exist as a standing wave of length L because they do 
not meet the constraint of having a node at each end of the string. ◀

If standing waves are possible for only certain wavelengths, then only specific 
oscillation frequencies are allowed. Because lf = v for a sinusoidal wave, the oscil-
lation frequency corresponding to wavelength lm is

 fm =
v
lm

=
v

2 L/m
= m  a v

2 L
b  m = 1, 2, 3, 4,c (16.2)

Frequencies of standing-wave modes of a string of length L

You can tell by inspection what mode number a particular standing wave corre-
sponds to. FIGURE 16.13 shows the first three standing-wave modes for a wave on a 
string fixed at both ends, with mode numbers, wavelengths, and frequencies labeled. 
The mode number m is equal to the number of antinodes of the standing wave, 
so you can determine the mode by counting the number of antinodes (not the number 
of nodes). Once you know the mode number, you can use the formulas for wave-
length and frequency to determine these values.

FIGURE 16.13 Possible standing-wave modes of a string fixed at both ends.

m  =  2

  =  Ll2  =  2L2 f2  =  2 v
2L

L
m  =  1

  =  2Ll1  =  2L1 f1  =  v
2L

L
m  =  3

 L  =   f3  =  3 v
2Ll3  =  2L3

2
3

L
The mode
number is
equal to the
number of
antinodes.

STOP TO THINK 16.3  A 2.0-m-long string carries a 
standing wave as in the figure at right. Extend the  
pattern and the formulas shown in Figure 16.13 to  
determine the mode number and the wavelength of 
this particular standing-wave mode.

 A. m = 6, l = 0.67 m B. m = 6, l = 0.80 m C. m = 5, l = 0.80 m
 D. m = 5, l = 1.0 m E. m = 4, l = 0.80 m F. m = 4, l = 1.0 m

2.0 m

In ◀◀ SECTION 14.7, we looked at the concept of resonance. A mass on a spring has  
a certain frequency at which it “wants” to oscillate. If the system is driven at its reso-
nance frequency, it will develop a large amplitude of oscillation. A stretched string will  
support standing waves, meaning it has a series of frequencies at which it “wants” to 
oscillate: the frequencies of the different standing-wave modes. We can call these  
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Only certain 
conditions 
work.

The frequencies have a 
specific relationship.

Suppose f1 = 100 Hz.

Then:

f1 = 100 Hz
f2 = 200 Hz
f3= 300 Hz

And so on.

A Mode
Is

A Resonance

When you pluck a guitar string—or any musical instrument 
string—you get all of the modes, all of the frequencies.

1 2 3 4 5 6 7 8 9 10

110 Hz

220 Hz
330 Hz
440 Hz

...

Fundamental:
It’s a low A.

Harmonics:
It’s a guitar.

Fundamental 
and 

Harmonics

Same Note, 
Different 
Sounds

Violin

Organ

Standing Sound Waves
Only certain conditions work…. Similar math to waves on strings.
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FIGURE 16.18a shows a column of air open at both ends. We call this an open-open 
tube. Whereas the antinodes of a standing wave on a string are points where the 
string oscillates with maximum displacement, the antinodes of a standing sound 
wave are where the pressure has the largest variation, creating, alternately, the maxi-
mum compression and the maximum rarefaction. In Figure 16.18a, the air molecules 
squeeze together on the left side of the tube. Then, in FIGURE 16.18b, half a cycle later, 
the air molecules squeeze together on the right side. The varying density creates a 
variation in pressure across the tube, as the graphs show. FIGURE 16.18c combines the 
information of Figures 16.18a and 16.18b into a graph of the pressure of the standing 
sound wave in the tube.

As the standing wave oscillates, the air molecules “slosh” back and forth along the 
tube with the wave frequency, alternately pushing together (maximum pressure at 
the antinode) and pulling apart (minimum pressure at the antinode). This makes 
sense, because sound is a longitudinal wave in which the air molecules oscillate par-
allel to the tube.

NOTE ▶ The variation in pressure from atmospheric pressure in a real standing 
sound wave is much smaller than Figure 16.18 implies. When we display graphs 
of the pressure in sound waves, we won’t generally graph the pressure p. Instead, 
we will graph ∆p, the variation from atmospheric pressure. ◀

Many musical instruments, such as a flute, can be modeled as open-open tubes. 
The flutist blows across one end to create a standing wave inside the tube, and a note 
of this frequency is emitted from both ends of the flute. The possible standing waves 
in tubes, like standing waves on strings, are resonances of the system. A gentle puff 
of air across the mouthpiece of a flute can cause large standing waves at these reso-
nant frequencies.

Other instruments work differently from the flute. A trumpet or a clarinet is a 
column of air open at the bell end but closed by the player’s lips at the mouthpiece. 
To be complete in our treatment of sound waves in tubes, we need to consider tubes 
that are closed at one or both ends. At a closed end, the air molecules can alternately 
rush toward the wall, creating a compression, and then rush away from the wall, leav-
ing a rarefaction. Thus a closed end of an air column is an antinode of pressure.

FIGURE 16.19 shows graphs of the first three standing-wave modes of a tube open at 
both ends (an open-open tube), a tube closed at both ends (a closed-closed tube), and 
a tube open at one end but closed at the other (an open-closed tube), all with the same 
length L. These are graphs of the pressure wave, with a node at open ends and an 

FIGURE 16.18 The m = 2 standing sound 
wave inside an open-open column of air.

RarefactionCompression
(a) At one instant

x
L0

L

patmos

p

(b) Half a cycle later

The shift between compression and rarefaction 
means a motion of molecules along the tube.

CompressionRarefaction

0
x

L

patmos

p L

(c) At the ends of the tube, the pressure is equal 
to atmospheric pressure. These are nodes.

At the antinodes, each cycle sees a change 
from compression to rarefaction and back to 
compression.

0
x

L

patmos

p

FIGURE 16.19 The first three standing sound wave modes in columns of air with different 
ends. These graphs show the pressure variation in the tube.

L

m  =  1

m  =  2

m  =  3

(a) Open-open

L

m  =  1

m  =  2

m  =  3

(b) Closed-closed

L

m  =  1

m  =  3

m  =  5

(c) Open-closed

The ends of the open-open tube
are nodes, so possible modes
have a node at each end.

The ends of the closed-closed tube
are antinodes, so possible modes
have an antinode at each end.

The open-closed tube has a node at one
end and an antinode at the other. Only
odd-numbered modes are possible.

To determine mode
number, imagine
doubling the length
at the closed end, and
count the antinodes.

The mode number equals
the number of antinodes.

The mode number equals
the number of nodes.
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Palm Pipes
A very simple musical instrument

Increased sensitivity of the ear

Your ear canal is an open-
closed tube. It has certain 
resonances that increase the 
amplitude at certain 
frequencies—including, for 
most folks, about 3,400 Hz.

Tones:
2000 Hz 
3400 Hz 
5000 Hz

f1 = 3,400 Hz
f3 = 10,200 Hz



Harmonics and Harmony

Bad:
30-40 Hz

Good:
a few Hz

100-ish Hz

Harmonics and Harmony

Bad:
30-40 Hz

Good:
a few Hz

100-ish Hz

130 Hz

132 Hz

2 Hz

128 Hz

134 Hz

4 Hz

Harmonics and Harmony

Bad:
30-40 Hz

Good:
a few Hz

100-ish Hz

278

Harmonics 
of C#

556

834

1112

1390

16 Hz

32 Hz

48 Hz

64 Hz

80 Hz

Formants

Resonances of  Vocal Tract
Source-Filter Model

Making Different 
Vowel Sounds

Spectrum of “ee” sound

First Formant

Second Formant

Slide: vowels & harmonics

Artificial Larynx



The Importance of Higher Harmonics
The higher harmonics determine the “tone quality” of a musical 
instrument, or the vowel sounds and plossives of speech.

As people age, their hearing gets less sharp. The higher frequencies are 
the first to go. The loss makes speech hard to interpret.

The first sound has had all frequencies > 1000 Hz removed.

The second sound has all harmonics intact.

The final sound has frequencies < 1000 Hz removed.

I’m All About That Treble.
Here’s the same song played three ways:
1. With no alteration.
2. With all frequencies greater than 1000 Hz removed.
3. With all frequencies less than 1000 Hz removed.

H
ea

ri
ng

 L
os

s 
(d

B)

-80

-60

-40

-20

0

Frequency (Hz)

100 1000 10000

50 years
60 years
70 years
80 years

Age-Related Hearing Loss We can hear you just 
fine.

We just can’t tell what 
you are saying.

Lower frequency = Bigger body

Lower frequency formants = Bigger body Using formants to determine body size

Breed Mass (kg) L (m)

Westie 8 0.13

Doberman 38 0.24

 

What are the 
frequencies of 
the first two 

formants?



Faster than the 
speed of sound...


