

Process	Energy	
Breaking a hydrogen bond between two water molecules	0.24 eV	I eV is about the minimum amount of energy to make something happen at an atomic scale.
Energy released in metabolizing one molecule of ATP	0.32 eV	
Breaking the bond between atoms in a water molecule	4.7 eV	
Ionizing a hydrogen atom	13.6 eV	

The Electromagnetic Spectrum		
Wave	Wavelength	Photon energy
FM Radio	10 feet	½ millionth eV
Microwave	6 inches	8 millionths eV
Thermal Radiation	I/10 of a hair	1/10 eV
Red	10x red blood cell	2 eV
Blue	6x red blood cell	3 eV
Ultraviolet	4x red blood cell	4 eV

The wavelength of the radiation from your phone is about the same as that of your microwave oven.

I minute on the phone

15 minutes on the phone

35.38

34.37 33.34 32.27

31.19 30.06 28.91 27.72 26.48

5.20

Warming the Bench

 $\frac{Q}{\Delta t}$

Suppose you are sitting, naked, on a steel bench with a temperature of $0^{\circ}C$ (The only thing insulating the core of your body (temperature $37^{\circ}C$) is a layer of skin and fat; we'll assume that the insulation is comparable to a layer of fat 1.2 cm thick. The area in contact with the bench is 0,16 m².

What is the rate of heat loss by conduction?

100 W - Equal to basal metabolic rate.

J

 $\theta_2 = \sin^{-1}(1.12) = ???$

 θ_2

 $\phi = \theta_2 - \theta_1,$ $\phi_{red} = 20.35^\circ.$ $s = r\delta = (2.0 \text{ m})(0.0393 \text{ rad}) = 0.0785 \text{ m} = 7.9 \text{ cm}$ $\phi_{violet} = 22.60^\circ.$ $\phi_{red} = 20.35^\circ \qquad \phi_{red} \qquad \phi_{violet} \qquad \delta.$ $\delta = \phi_{violet} - \phi_{red} = 2.25^\circ = 0.0393 \text{ rad}$ **Making a Rainbow**