
Physics of Everyday Life 
Why do you take really short steps when you 
walk on ice? Why are hybrid cars more 
efficient for in-town driving? Why does a 
standard electric outlet have three holes, but 
many devices only use two of them? Why is 
the sky blue, and why are sunsets red? Why 
are new light bulbs so much more efficient 
than the old incandescent bulbs? These are 
examples of the questions that we’ll work out 
in this class. Each class, we’ll start with some 
hands-on experimentation to help us 
understand basic principles of motion, of 
electricity, of light, of sound of magnetism 
and other topics. And then we’ll discuss how 
what we’ve learned applies to everyday life. 
Come prepared to be active, to be social, and 
to be amazed! You don’t need any 
background in science—just a bit of curiosity 
and a willingness to engage and explore!

Brian Jones 
physicsjones@gmail.com

Week 1:		 Everything Is Electric 
Week 2: 	 Is It Magic, or Is It Magnets? 
Week 3: 	On Your Wavelength: Electromagnetic Waves 
Week 4: 	Physics of Sound & Music 
Week 5: 	 Energy, Thermodynamics & The Arrow of Time 
Week 6: 	 Push and Pull: Force & Motion 
Week 7: 	Go With the Flow: Physics of Fluids 
Week 8: 	 A Warm Planet in a Cold Universe: How the Earth Stays 	 	  
             	Warm, and Why It’s Getting Warmer

Oscillations and Resonance

When you push it to 
the side, something 

pushes it back.

Making Sound
#1: Need an oscillation

Mass on Spring
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STOP TO THINK 14.1  Two oscillating systems have periods T1 and T2 , with T1 6 T2. 
How are the frequencies of the two systems related?

 A. f1 6 f2      B. f1 = f2      C. f1 7 f2

Oscillatory Motion
Let’s make a graph of the motion of the marble in a bowl, with positions to the right 
of equilibrium positive and positions to the left of equilibrium negative. FIGURE 14.4 
shows a series of “snapshots” of the motion and the corresponding points on the 
graph. This graph has the form of a cosine function. A graph or a function that has 
the form of a sine or cosine function is called sinusoidal. A sinusoidal oscillation is 
called simple harmonic motion, often abbreviated SHM.

FIGURE 14.4 Constructing a position-versus-time graph for a marble rolling in a bowl.

The period T is the time to 
complete one oscillation.

t0

T

-
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Position

Released at the right
side of the bowl

Passing through the
equilibrium position

At the left side,
reversing direction

Going the other way
through equilibrium

One oscillation done,
starting the next

Examples of simple harmonic motion

Oscillating system   Related real-world example

Mass on a spring

m

k

The mass oscillates back  
and forth due to the  
restoring force of the  
spring. The period  
depends on the mass and  
the stiffness of the spring.

Vibrations in the ear
Sound waves entering the ear  
cause the oscillation of a  
membrane in the cochlea. The  
vibration can be modeled as a 
mass on a spring. The period  
of oscillation of a segment of the  
membrane depends on  
mass (the thickness of the  
membrane) and stiffness (the  
rigidity of the membrane).

Pendulum

L

The mass oscillates back  
and forth due to the  
restoring gravitational  
force. The period  
depends on the length of  
the pendulum and the  
free-fall acceleration g.

Motion of legs while walking

The motion of a walking  
animal’s legs can be modeled  
as pendulum motion. The  
rate at which the legs swing  
depends on the length of  
the legs and the free-fall  
acceleration g.

A marble rolling in the bottom of a bowl undergoes simple harmonic motion, as 
does a car bouncing on its springs. SHM is very common, but most cases of SHM  
can be modeled as one of two simple systems: a mass oscillating on a spring or a  
pendulum swinging back and forth.Class Video
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Making Sound
#2: Need to create a wave in air

Wave Property
The air doesn’t travel…. The 

wave does!

Frequency and Wavelength

Wavelength

Frequency and Wavelength

Frequency is how many waves per second hit one point.

1 cycle per second = 1 hertz (1 Hz)



Shorter wavelength means higher frequency.

Higher Frequency Means Higher Pitch

Standing Wave Modes

Harmonics

Standing Wave Modes

Harmonic Series

Note 
sung at 
200 Hz

Fundamental:
200 Hz

400 Hz

600 Hz

800 Hz

1000 Hz

A Typical Sound is a Mix of Different Frequencies.

Your Brain Decodes the Mix In Amazing Ways.

110 Hz

220 Hz
330 Hz
440 Hz

...

Fundamental:
It’s a low A.

Harmonics:
It’s a guitar.

Fundamental 
and 

Harmonics

Modes and Nodes
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The subscript identifies the mode number; in this case m = 1. For m = 2, the distance 
between nodes is L/2; this means that l2 = L. Generally, for any mode m the wave-
length is given by the equation

L

The simplest standing
wave has one node at
each end, and no more.

The third possible standing
wave has two nodes in addition
to the nodes at the end.

The next possible standing wave 
we can make has an additional 
node in the center.

m  =  1

m  =  2

m  =  3

FIGURE 16.12 The first three possible 
standing waves on a string of length L.

 lm =
2 L
m
  m = 1, 2, 3, 4,g (16.1)

Wavelengths of standing-wave modes of a string of length L

These are the only possible wavelengths for standing waves on the string. A stand-
ing wave can exist on the string only if its wavelength is one of the values given 
by Equation 16.1.

NOTE ▶ Other wavelengths, which would be perfectly acceptable wavelengths 
for a traveling wave, cannot exist as a standing wave of length L because they do 
not meet the constraint of having a node at each end of the string. ◀

If standing waves are possible for only certain wavelengths, then only specific 
oscillation frequencies are allowed. Because lf = v for a sinusoidal wave, the oscil-
lation frequency corresponding to wavelength lm is

 fm =
v
lm

=
v

2 L/m
= m  a v

2 L
b  m = 1, 2, 3, 4,c (16.2)

Frequencies of standing-wave modes of a string of length L

You can tell by inspection what mode number a particular standing wave corre-
sponds to. FIGURE 16.13 shows the first three standing-wave modes for a wave on a 
string fixed at both ends, with mode numbers, wavelengths, and frequencies labeled. 
The mode number m is equal to the number of antinodes of the standing wave, 
so you can determine the mode by counting the number of antinodes (not the number 
of nodes). Once you know the mode number, you can use the formulas for wave-
length and frequency to determine these values.

FIGURE 16.13 Possible standing-wave modes of a string fixed at both ends.

m  =  2

  =  Ll2  =  2L2 f2  =  2 v
2L

L
m  =  1

  =  2Ll1  =  2L1 f1  =  v
2L

L
m  =  3

 L  =   f3  =  3 v
2Ll3  =  2L3

2
3

L
The mode
number is
equal to the
number of
antinodes.

STOP TO THINK 16.3  A 2.0-m-long string carries a 
standing wave as in the figure at right. Extend the  
pattern and the formulas shown in Figure 16.13 to  
determine the mode number and the wavelength of 
this particular standing-wave mode.

 A. m = 6, l = 0.67 m B. m = 6, l = 0.80 m C. m = 5, l = 0.80 m
 D. m = 5, l = 1.0 m E. m = 4, l = 0.80 m F. m = 4, l = 1.0 m

2.0 m

In ◀◀ SECTION 14.7, we looked at the concept of resonance. A mass on a spring has  
a certain frequency at which it “wants” to oscillate. If the system is driven at its reso-
nance frequency, it will develop a large amplitude of oscillation. A stretched string will  
support standing waves, meaning it has a series of frequencies at which it “wants” to 
oscillate: the frequencies of the different standing-wave modes. We can call these  
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Standing Sound Waves
Only certain conditions work.

510  CHA P T E R  16 Superposition and Standing Waves

FIGURE 16.18a shows a column of air open at both ends. We call this an open-open 
tube. Whereas the antinodes of a standing wave on a string are points where the 
string oscillates with maximum displacement, the antinodes of a standing sound 
wave are where the pressure has the largest variation, creating, alternately, the maxi-
mum compression and the maximum rarefaction. In Figure 16.18a, the air molecules 
squeeze together on the left side of the tube. Then, in FIGURE 16.18b, half a cycle later, 
the air molecules squeeze together on the right side. The varying density creates a 
variation in pressure across the tube, as the graphs show. FIGURE 16.18c combines the 
information of Figures 16.18a and 16.18b into a graph of the pressure of the standing 
sound wave in the tube.

As the standing wave oscillates, the air molecules “slosh” back and forth along the 
tube with the wave frequency, alternately pushing together (maximum pressure at 
the antinode) and pulling apart (minimum pressure at the antinode). This makes 
sense, because sound is a longitudinal wave in which the air molecules oscillate par-
allel to the tube.

NOTE ▶ The variation in pressure from atmospheric pressure in a real standing 
sound wave is much smaller than Figure 16.18 implies. When we display graphs 
of the pressure in sound waves, we won’t generally graph the pressure p. Instead, 
we will graph ∆p, the variation from atmospheric pressure. ◀

Many musical instruments, such as a flute, can be modeled as open-open tubes. 
The flutist blows across one end to create a standing wave inside the tube, and a note 
of this frequency is emitted from both ends of the flute. The possible standing waves 
in tubes, like standing waves on strings, are resonances of the system. A gentle puff 
of air across the mouthpiece of a flute can cause large standing waves at these reso-
nant frequencies.

Other instruments work differently from the flute. A trumpet or a clarinet is a 
column of air open at the bell end but closed by the player’s lips at the mouthpiece. 
To be complete in our treatment of sound waves in tubes, we need to consider tubes 
that are closed at one or both ends. At a closed end, the air molecules can alternately 
rush toward the wall, creating a compression, and then rush away from the wall, leav-
ing a rarefaction. Thus a closed end of an air column is an antinode of pressure.

FIGURE 16.19 shows graphs of the first three standing-wave modes of a tube open at 
both ends (an open-open tube), a tube closed at both ends (a closed-closed tube), and 
a tube open at one end but closed at the other (an open-closed tube), all with the same 
length L. These are graphs of the pressure wave, with a node at open ends and an 

FIGURE 16.18 The m = 2 standing sound 
wave inside an open-open column of air.

RarefactionCompression
(a) At one instant

x
L0

L

patmos

p

(b) Half a cycle later

The shift between compression and rarefaction 
means a motion of molecules along the tube.

CompressionRarefaction

0
x

L

patmos

p L

(c) At the ends of the tube, the pressure is equal 
to atmospheric pressure. These are nodes.

At the antinodes, each cycle sees a change 
from compression to rarefaction and back to 
compression.

0
x

L

patmos

p

FIGURE 16.19 The first three standing sound wave modes in columns of air with different 
ends. These graphs show the pressure variation in the tube.

L

m  =  1

m  =  2

m  =  3

(a) Open-open

L

m  =  1

m  =  2

m  =  3

(b) Closed-closed

L

m  =  1

m  =  3

m  =  5

(c) Open-closed

The ends of the open-open tube
are nodes, so possible modes
have a node at each end.

The ends of the closed-closed tube
are antinodes, so possible modes
have an antinode at each end.

The open-closed tube has a node at one
end and an antinode at the other. Only
odd-numbered modes are possible.

To determine mode
number, imagine
doubling the length
at the closed end, and
count the antinodes.

The mode number equals
the number of antinodes.

The mode number equals
the number of nodes.
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Longer 
Tubes 
Mean 
Lower 
Pitches

Harmonic Series

Note 
sung at 
200 Hz

Fundamental:
200 Hz

400 Hz

600 Hz

800 Hz

1000 Hz

Formants

Resonances of  Vocal Tract
Source-Filter Model

Using formants to determine body size Superposition
Where two waves meet, the displacement is the sum of 
the displacements of the two waves.

 16.1 The Principle of Superposition 501

16.1 The Principle of Superposition
FIGURE 16.1a shows two baseball players, Alan and Bill, at batting practice. Unfortunately, 
someone has turned the pitching machines so that pitching machine A throws baseballs 
toward Bill while machine B throws toward Alan. If two baseballs are launched at the 
same time and with the same speed, they collide at the crossing point and bounce away. 
Two baseballs cannot occupy the same point of space at the same time.

FIGURE 16.1 Two baseballs cannot pass through each other. Two waves can.

Pitching machines

Alan Bill
The balls collide 
and bounce apart.

(a)

A B

Alan Bill
The waves pass 
through each other.

Loudspeakers(b)
A B

FIGURE 16.2 Two wave pulses on a 
stretched string pass through each other.

Wave 1

Two waves overlap

Wave 2

Wave 2 Wave 1

FIGURE 16.3 The superposition of two 
waves on a string as they pass through 
each other.

x (m)
10 2 3 4 5 6 7

x (m)
10 2 3 4 5 6 7

x (m)
10 2 3 4 5 6 7

x (m)
10 2 3 4 5 6 7

x (m)
10 2 3 4 5 6 7

Both waves emerge unchanged.

The net displacement is the point-by-point
summation of the individual waves.

Two waves approach each other.

1 m/s 1 m/s

1 m/s1 m/s

t  =  0 s

t  =  1 s

t  =  2 s

t  =  3 s

t  =  4 s

But unlike baseballs, sound waves can pass directly through each other. In  
FIGURE 16.1b, Alan and Bill are listening to the stereo system in the locker room after 
practice. Both hear the music quite well, without distortion or missing sound, so 
the sound wave that travels from speaker A toward Bill must pass through the wave 
traveling from speaker B toward Alan, with no effect on either. This is a basic 
property of waves.

What happens to the medium at a point where two waves are present simultane-
ously? What is the displacement of the medium at this point? FIGURE 16.2 shows a 
sequence of photos of two wave pulses traveling along a stretched string. In the first 
photo, the waves are approaching each other. In the second, the waves overlap, and 
the displacement of the string is larger than it was for either of the individual waves. 
A careful measurement would reveal that the displacement is the sum of the displace-
ments of the two individual waves. In the third frame, the waves have passed through 
each other and continue on as if nothing had happened.

This result is not limited to stretched strings; the outcome is the same whenever 
two waves of any type pass through each other. This is known as the principle of 
superposition:

Principle of superposition When two or more waves are simultaneously  
present at a single point in space, the displacement of the medium at that point  
is the sum of the displacements due to each individual wave.

To use the principle of superposition you must know the displacement that each 
wave would cause if it traveled through the medium alone. Then you go through the 
medium point by point and add the displacements due to each wave at that point to find 
the net displacement at that point. The outcome will be different at each point in the 
medium because the displacements are different at each point.

Let’s illustrate this principle with an idealized example. FIGURE 16.3 shows five 
snapshot graphs taken 1 s apart of two waves traveling at the same speed 11 m/s2  in 
opposite directions along a string. The displacement of each wave is shown as a dashed 
line. The solid line is the sum at each point of the two displacements at that point. This 
is the displacement that you would actually observe as the two waves pass through 
each other.
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Add a 
wave and 
its 
opposite

518  CHA P T E R  16 Superposition and Standing Waves

Another interesting and important case of interference, illustrated in FIGURE 16.28, 
occurs when one loudspeaker emits a sound wave that is the exact inverse of the 
wave from the other speaker. If the speakers are side by side, so that ∆d = 0, the 
superposition of these two waves will result in destructive interference; they will 
completely cancel. This destructive interference does not require the waves to have 
any particular frequency or any particular shape.

FIGURE 16.28 Opposite waves cancel.

x

Speaker 1

Speaker 2

∆p

At each position, the wave from speaker 2 is 
opposite that from speaker 1.

The superposition is thus a wave with zero 
amplitude at all points.

FIGURE 16.29 A spherical wave.

The wave fronts are
crests, separated by l.

Troughs are halfway
between wave fronts.

Source

r

v

This graph shows the crests
and troughs of the wave.

l

Headphones with active noise reduction use this technique. A microphone on the 
outside of the headphones measures ambient sound. A circuit inside the headphones 
produces an inverted version of the microphone signal and sends it to the headphone 
speakers. The ambient sound and the inverted version of the sound from the speakers 
arrive at the ears together and interfere destructively, reducing the sound intensity. In 
this case, adding sound results in a lower overall intensity inside the headphones!

Interference of Spherical Waves
Interference along a line illustrates the idea of interference, but it’s not very realistic. 
In practice, sound waves from a loudspeaker or light waves from a lightbulb spread 
out as spherical waves. FIGURE 16.29 shows a wave-front diagram for a spherical wave. 
Recall that the wave fronts represent the crests of the wave and are spaced by the 
wavelength l. Halfway between two wave fronts is a trough of the wave. What hap-
pens when two spherical waves overlap? For example, imagine two loudspeakers 
emitting identical waves radiating sound in all directions. FIGURE 16.30 shows the wave 
fronts of the two waves. This is a static picture, of course, so you have to imagine the 
wave fronts spreading out as new circular rings are born at the speakers. The waves 
overlap as they travel, and, as was the case in one dimension, this causes interference.

Consider a particular point like that marked by the red dot in Figure 16.30. The 
two waves each have a crest at this point, so there is constructive interference here. 
But at other points, such as that marked by the black dot, a crest overlaps a trough, so 
this is a point of destructive interference.

Notice—simply by counting the wave fronts—that the red dot is three wave-
lengths from speaker 2 1r2 = 3l2  but only two wavelengths from speaker 1 1r1 = 2l2 . The path-length difference of the two waves arriving at the red dot is 
∆r = r2 - r1 = l. That is, the wave from speaker 2 has to travel one full wavelength 
more than the wave from speaker 1, so the waves are in phase (crest aligned with 
crest) and interfere constructively. You should convince yourself that ∆r is a whole 
number of wavelengths at every point where two wave fronts intersect.

Similarly, the path-length difference at the black dot, where the interference is destruc-
tive, is ∆r = 1

2 l. As with interference along a line, destructive interference results when 
the path-length difference is a whole number of wavelengths plus half a wavelength.

Thus the general rule for determining whether there is constructive or destructive 
interference at any point is the same for spherical waves as for waves traveling along 
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Sound Canceling 
Headphones
How can adding sound 
reduce the overall sound 
intensity level inside the 
headphones?

What is the point of the 
microphone outside the 
headphones?



Harmonics and Harmony

Bad:
30-40 Hz

Good:
a few Hz

100-ish Hz

Harmonics and Harmony

Bad:
30-40 Hz

Good:
a few Hz

100-ish Hz

130 Hz

132 Hz

2 Hz

128 Hz

134 Hz

4 Hz

Harmonics and Harmony

Bad:
30-40 Hz

Good:
a few Hz

100-ish Hz

278

Harmonics 
of C#

556

834

1112

1390

16 Hz

32 Hz

48 Hz

64 Hz

80 Hz


