

Kinetic energy	Energy of motion. If something is moving, it has kinetic energy. Moving faster means more kinetic energy.
Gravitational potential energy	If something is up high, it has a lot; if something is down low, it doesn't
Elastic potential energy	Stored in springs, or in springy materials. More stretch means more energy.
Radiant energy	The energy of light and other waves, like microwaves.
Electric energy	The energy of moving charges in circuits.
Chemical energy	Energy stored in the form of chemical: Food, fuel and the like.
Nuclear energy	Energy stored in the nuclei of atoms.
Thermal energy	When something is hot, it has a lot; when it is cold, it has a little.

Device	Typical Power
Laptop	10 W
LED bulb for reading	20 W
Television	60 W
Refrigerator	600 W
Vacuum Cleaner	1000 W
Typical Home, Excluding Heating and Cooling	1000 W
Toaster	I 500 W
Clothes Dryer	5000 W
Electric Car	1,000 W to 150,000 W

An elite 70 kg human sprinter can accelerate from rest to 10 m/s in 3.0 s.

The power output is pretty modest....

Pedaling my recumbent tricycle at a steady 12 mph requires about 180 W of energy output.

If I cycle at a steady speed of 12 mph, my power output is about 180 W. My body is using about 720 W of chemical energy.

Where does this energy come from?

If I cycle at a steady speed of I 2 mph, my power output is about 180 W. My body is using about 720 W of chemical energy.

Where does this energy go?

	chieftes of the second law of thermodynamics
Phenomenon	Related Statement of the Second Law
Heat energy spontaneously flows from hot to cold.	When two systems at different temperatures interact, hear energy is transferred spontaneously from the hotter to the colder system, never from the colder to the hotter.
Entropy considerations limit the possible efficiency of a heat engine.	It is not possible to make a heat engine that converts thermal energy into an equivalent amount of work.
It takes energy to move heat from a cold object to a warm object.	It is not possible to make a heat pump that moves heat from a cold object to a hot object without an external energy input.

to a warm object. energy input. The entropy of an The time direction in which the entropy of an isolated system will never spontaneously decrease.

Freezing is hot???

Why does heat come out of the pack as it freezes?

This is the only basic law of nature that has a time direction.

And it's a law of nature that you can violate. You can build a machine that reduces entropy.