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13.1 Fluids and Density
A fluid is simply a substance that flows. Because they flow, fluids take the shape of 
their containers rather than retaining a shape of their own. Gases and liquids are both 
fluids, and their similarities are often more important than their differences.

As you learned in ◀◀ SECTION 12.2, a gas, as shown in FIGURE 13.1a, is a system in 
which each molecule moves freely through space until, on occasion, it collides with 
another molecule or with the wall of the container. Gases are compressible; that is, 
the volume of a gas is easily increased or decreased, a consequence of the “empty 
space” between the molecules in a gas.

Liquids are more complicated than either gases or solids. Liquids, like solids, are 
essentially incompressible. This property tells us that the molecules in a liquid, as in 
a solid, are about as close together as they can get. At the same time, a liquid flows 
and deforms to fit the shape of its container. The fluid nature of a liquid tells us that 
the molecules are free to move around. Together, these observations suggest the 
model of a liquid shown in FIGURE 13.1b.

Density
Suppose we have several blocks of copper, each of different size. Each block has a 
different mass m and a different volume V. Nonetheless, all the blocks are copper, so 
there should be some quantity that has the same value for all the blocks, telling us, 
“This is copper, not some other material.” The most important such parameter is the 
ratio of mass to volume, which we call the mass density r (lowercase Greek rho):

Molecules are
far apart. This
makes a gas
compressible.

Gas molecule moving
freely through spaceContainer

Gas molecules occasionally
collide with each other c cor the wall.

(a) A gas

Molecules make weak bonds with each
other that keep them close together. But
the molecules can slide around each other,
allowing the liquid to flow and conform to
the shape of its container.

A liquid has a
well-defined surface.

(b) A liquid

Molecules are
about as close
together as they
can get. This
makes a liquid
incompressible.

FIGURE 13.1 Simple atomic-level models 
of gases and liquids.

 r =
m
V

 (13.1)

Mass density of an object of mass m and volume V

Therefore, an object of mass density r and volume V has mass

 m = rV (13.2)

The SI units of mass density are kg/m3. Nonetheless, units of g/cm3 are widely 
used. You need to convert these to SI units before doing most calculations:

1 g/cm3 = 1000 kg/m3

The mass density is usually called simply “the density” if there is no danger of 
confusion. Density is independent of the object’s size. That is, mass and volume are 
parameters that characterize a specific piece of some substance—say, copper—
whereas density characterizes the substance itself. All pieces of copper have the 
same density, which differs from the density of almost any other substance.

TABLE 13.1 provides a short list of the densities of various fluids. Notice the enor-
mous difference between the densities of gases and liquids. Gases have lower densi-
ties because the molecules in gases are farther apart than in liquids. Also, the density 
of a liquid varies only slightly with temperature because its molecules are always 
nearly in contact. The density of a gas, such as air, has a larger variation with tem-
perature because it’s easy to change the already large distance between the 
molecules.

What does it mean to say that the density of gasoline is 680 kg/m3? Recall in 
Chapter 1 we discussed the meaning of the word “per.” We found that it meant “for 
each,” so that 2 miles per hour means you travel 2 miles for each hour that passes. In 
the same way, saying that the density of gasoline is 680 kg per cubic meter means 
that there are 680 kg of gasoline for each 1 cubic meter of the liquid. If we have  
2 m3 of gasoline, each will have a mass of 680 kg, so the total mass will be 
2 * 680 kg = 1360 kg.

TABLE 13.1 Densities of fluids at 1 atm 
pressure

Substance R 1kg/m3 2
Hydrogen gas (20°C) 0.083

Helium gas (20°C) 0.166

Air (20°C) 1.20

Air (0°C) 1.28

Gasoline 680

Ethyl alcohol 790

Oil (typical) 900

Water 1000

Seawater 1030

Blood (whole) 1060

Glycerin 1260

Mercury 13,600

M13_KNIG9034_04_SE_C13_pp.441-481.indd   442 24/08/17   5:44 PM

 13.3 Buoyancy 453

A 2.0 g latex balloon is filled with helium. When it is completely inflated, its shape is 
approximately spherical with a diameter of 24 cm. If the balloon is released, what is its 
initial upward acceleration?

STRATEGIZE The balloon plus the helium inside it has 
a certain mass; this leads to a downward weight force. 
But the balloon displaces a certain amount of air, and 
this leads to an upward buoyant force. We’re told that 
the balloon accelerates upward, so we know that the 
upward buoyant force exceeds the downward weight 
force, as in FIGURE 13.18. This net force will produce an 
upward acceleration.

PREPARE We assume that the atmospheric pressure 
is 1 atm; we can also assume that the pressure inside 
the balloon is the same. Table 13.1 lists the densities for 
helium and for air at 1 atm pressure: rHe = 0.166 kg/m3 
and rair = 1.20 kg/m3. The volume of the balloon in m3 is

V =
4
3

 pr3 =
4
3

 p10.12 m23 = 0.00724 m3

The thickness of the latex is negligible, so this is the volume of helium in the balloon as 
well as Vf, the volume of fluid displaced.

SOLVE The total mass is the sum of the mass of the latex balloon 10.0020 kg2 and the 
mass of the helium:

m = 0.0020 kg + rHeV = 0.0020 kg + 10.166 kg/m3210.00724 m32 = 0.0032 kg

The weight force is

w = 10.0032 kg219.8 m/s22 = 0.031 N

The upward buoyant force is

FB = rfVg = 11.20 kg/m3210.00724 m3219.8 m/s22 = 0.085 N

The net force is the difference of these two forces:

Fnet = FB - w = 0.085 N - 0.031 N = 0.054 N

The initial acceleration of the balloon is

a =
Fnet

m
=

0.054 N
0.0032 kg

= 17 m/s2

ASSESS The buoyant force is much greater than the weight force, so we expect a very 
large initial acceleration. If you’ve ever been holding a helium balloon and loosened 
your grip for just a second, you’ve no doubt seen this in action! 

How fast will the balloon rise?EXAMPLE 13.8 

FB

wu

u Fnet
u

FIGURE 13.18 The forces 
acting on a helium balloon.

Hot air rising A hot-air balloon is filled 
with a low-density gas: hot air! You learned in 
Chapter 12 that gases expand upon heating, 
which lowers their density. The air at the top 
of a hot-air balloon is surprisingly toasty—
about 100°C. The density of the heated air 
is about 80% that of room-temperature air. 
The weight of the air displaced significantly 
exceeds the weight of the air inside the bal-
loon, allowing the balloon to lift the weight of 
the passengers and the basket.

 Video Buoyancy and Density Part 2

eText
2.0

TABLE 13.3 Densities of body 
components

Body Component Density (kg/m3)

Fat 0.90

Water 1.00

Blood 1.05

Muscle 1.06

Bone 1.28

Buoyancy and Bodies 
Different components of your body have different densities, as shown in TABLE 13.3. 
Of the different body components, only fat has a density lower than that of water. An 
average college student’s body is about 20% fat, with the balance a mix of water, 
muscle, blood, and bone. With this typical fat percentage, the overall density of the 
body is about 1050 kg/m3. Submerged in water, a person with this density would 
sink. But if the person takes a deep breath, she reduces her overall density to approx-
imately 990 kg/m3 and will float. This is a common experience for most folks: After 
taking a deep breath, you float; if you exhale as completely as possible, you sink.

In Example 13.5, we saw that the density of an object could be determined by 
weighing it both underwater and in air. The same thing can be done with a person. 
Since fat has a lower density than muscle or bone, a lower overall body density 
implies a greater proportion of body fat. To determine a person’s density, he is first 

Masters of density  A manatee may 
look chubby, but these mammals live in fresh 
water and must dive for their food. Too much 
fat would make them positively buoyant, 
which would cost them energy to forage. A 
typical body fat percentage for a manatee is 
about 7%, comparable to elite human athletes, 
and this reduces the energy cost for diving. 
Manatees have other adaptations to reduce the 
energy cost of moving in the water. They care-
fully adjust the amount of residual air in their 
lungs to achieve nearly neutral buoyancy. They 
can also move air from one lung to the other to 
roll, and from the top of the lungs to the bot-
tom to tip forward for a dive.
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900 
1000 
1050 
1060 
1280

Fat is less dense than 
water, muscle is more 

dense than water.

Gold is very dense.

7 inches long, 3½ inches wide, 1 ¾ inches deep
27 pounds



From Wikipedia
Gold cost $38.69 per 
troy ounce in 1968, so 
four million dollars in 
gold bars would have 
weighed about 3,200  kg 
(7,100  lb), requiring each 
of the three Minis to 
carry about 1,070  kg 
(2,360  lb) in addition to 
the driver and passenger. 
Since a 1968 Mini only 
weighs 630 kg (1,390  lb), 
each of these vehicles 
would have had to carry 
11⁄2 times its own weight 
in gold.

The Italian Job

Water density
1000 kg/m3

meaning

1.0 kg per liter

Mass
25 kg

Volume
25 liters

Fort Collins air density
1.0 kg/m3

Meaning

1.0 kg per m3

1.0 g per liter

Pressure
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Pressure
Everyone has some sense of the concept of pressure. If you get a hole in your bicy-
cle tire, the higher-pressure air inside comes squirting out. It’s hard to get the lid off 
a vacuum-sealed jar because of the low pressure inside. But just what is pressure?

Let’s take an atomic-scale view of pressure, defining it in terms of the motion of 
particles of a gas. Suppose we have a sample of gas in a container with rigid walls. 
As particles in the gas move around, they sometimes collide with and bounce off the 
walls, creating a force on the walls, as illustrated in FIGURE 12.5a.

PREPARE We can use the periodic table to determine that the 
mass of a nitrogen atom is 14 u. A molecule consists of two atoms, 
so its mass is 28 u. Thus the molecular mass in SI units (i.e., kg) is

m = 28 u *
1.66 * 10-27 kg

1 u
= 4.6 * 10-26 kg

The problem statement gives two temperatures we’ll call T1 and 
T2; we need to express these in kelvin. The lowest temperature 
ever observed on earth is T1 = -95 + 273 = 178 K; the highest 
temperature is T2 = 54 + 273 = 327 K.

SOLVE We use Equation 12.11 to find vrms for the nitrogen mol-
ecules at T1:

vrms = B3kBT1

m
= B311.38 * 10-23 J/K21178 K2

4.6 * 10-26 kg
= 400 m/s

Because the rms speed is proportional to the square root of the tem-
perature, doubling the rms speed would require increasing the tem-
perature by a factor of 4. The ratio of the highest temperature ever 
recorded to the lowest temperature ever recorded is less than this:

T2

T1
=

327 K
178 K

= 1.8

The temperature at the earth’s surface is never high enough that a 
typical nitrogen molecule would move at twice the computed speed.

ASSESS We can use the square-root relationship to assess our 
computed result for the molecular speed. Figure 12.4 shows an 
rms speed of 510 m/s for nitrogen molecules at 20°C, or 293 K. 
Temperature T1 is about 0.6 of this, so we’d expect to compute a 
speed that is lower by the square root of 0.6 about 0.8, which is 
what we found.

Each collision exerts a force 
on the wall. The net force due
to all the collisions causes the
gas to have a pressure.

On a macroscopic scale, these 
microscopic collisions exert 
a force F on an area A
of the wall that is
proportional 
to A.

There are an enormous 
number of collisions 
of particles against the 
wall per second.

(a) (b)

Area A

F
u

u

FIGURE 12.5 The pressure in a gas is due to the force of the particles colliding with the 
walls of its container.

These countless microscopic collisions are what lead to the pressure in the gas. 
On a small patch of the container wall with surface area A, these collisions result in 
a continuous macroscopic force of magnitude F directed perpendicular to the wall, 
as shown for the bicycle tire in FIGURE 12.5b. If the size of the patch is doubled, then 
twice as many particles will hit it every second, leading to a doubling of the force. 
This implies that the force is proportional to the area of the patch, and so the ratio 
F/A is constant. We define this ratio to be the pressure p of the gas:

 p =
F
A

 (12.12)

Definition of pressure in a gas

You can see from Equation 12.12 that a gas exerts a force of magnitude

 F = pA (12.13)
on a surface of area A.
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Each collision exerts a force 
on the wall. The net force due
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There are an enormous 
number of collisions 
of particles against the 
wall per second.
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Area A

F
u

u

FIGURE 12.5 The pressure in a gas is due to the force of the particles colliding with the 
walls of its container.

These countless microscopic collisions are what lead to the pressure in the gas. 
On a small patch of the container wall with surface area A, these collisions result in 
a continuous macroscopic force of magnitude F directed perpendicular to the wall, 
as shown for the bicycle tire in FIGURE 12.5b. If the size of the patch is doubled, then 
twice as many particles will hit it every second, leading to a doubling of the force. 
This implies that the force is proportional to the area of the patch, and so the ratio 
F/A is constant. We define this ratio to be the pressure p of the gas:
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Definition of pressure in a gas

You can see from Equation 12.12 that a gas exerts a force of magnitude

 F = pA (12.13)
on a surface of area A.
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Pressure

LOOKING AHEAD ▶▶

The Ideal Gas
The high pressure in a car tire is due to the 
countless collisions between the air mole-
cules inside and the tire’s walls.

Heat and Temperature
Adding ice cools your drink as heat is 
 transferred from the warm drink to the cold 
ice; even more heat is used to melt the ice.

You’ll learn how gas properties are related to 
the microscopic motion of the gas molecules.

You’ll learn how to compute the temperature 
changes that occur when heat is transferred 
or during a phase change such as melting.

You’ll learn about the heat-transfer 
mechanisms of conduction, convection, and 
radiation.

Heat Transfer
Its large ears keep an elephant cool. Blood 
flowing through large vessels loses heat to 
the environment, returning to the body at a 
lower temperature.

Thermal Properties  
of Matter

This thermal image shows a person 
with warm hands holding  
a much cooler tarantula.  
Why do the hands radiate  
energy? And why does the  
tarantula radiate less?

  GOAL To use the atomic model of matter to explain many properties of matter associated with heat and temperature.

LOOKING BACK ◀◀

Heat
In Section 11.4 you learned 
about heat and the first law of 
thermodynamics. In this chapter 
we will explore some of the 
consequences of transferring 
heat to or from a system, and 
doing work on the system.

STOP TO THINK

A blender does 5000 J of work on the food in its bowl. Dur-
ing the time the blender runs, 2000 J of heat is transferred 
from the warm food to the cooler environment. What is the 
change in the thermal energy of the food?
A. +2000 J B. +3000 J
C. +7000 J D. -2000 J
E. -3000 J

You learned that a system’s energy 
can be changed by doing work on 
it or by transferring heat to it.
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FIGURE 12.5 The pressure in a gas is due to the force of the particles colliding with the 
walls of its container.
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a continuous macroscopic force of magnitude F directed perpendicular to the wall, 
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Definition of pressure in a gas

You can see from Equation 12.12 that a gas exerts a force of magnitude

 F = pA (12.13)
on a surface of area A.
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Typical tire pressure: 32 pounds per square inch
221,000 Pascals = 221 kPa

Why is the 
pressure in 
bike tires 

higher than 
in car tires?



Pressure changes with 
temperature
A football is inflated in a 70°F locker 
room before the game. The air warms as 
it is pumped, so it enters the ball at a 
temperature of 80°F (26.7°C).

The ball is inflated to 12.5 psi (86.2 kPa) 
at the lower end of the official range. 
Atmospheric pressure is 100 kPa.

The ball is used for play at a temperature 
of 50°F (10°C).  Once the ball cools, the 
pressure is 11.0 psi.

Pressure vs. Depth

Pressure

The air at the earth’s surface supports the weight of all the air 
above it: That’s the source of atmospheric pressure.

We define the pressure at sea level as 1 atmosphere.

Pressure vs. Height

As you go higher in the 
atmosphere, there is less air 
above you. So the pressure is 

lower.

Sea Level:
101 kPa

Fort Collins
83% of sea level 

pressure
84 kPa

South Crestone Lake:
64% of sea level 
pressure 65 kPa

Pressure vs. Depth

In water

+10 m depth
means

+1.0 atm pressure
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The Arteries and Capillaries
In the human body, blood pumped from the heart to the body starts its journey in a 
single large artery, the aorta. The flow then branches into smaller blood vessels, the 
large arteries that feed the head, the trunk, and the limbs. These branch into still 
smaller arteries, which then branch into a network of much smaller arterioles, which 
branch further into the capillaries. FIGURE 13.37 shows a schematic outline of the cir-
culation, with average values for the diameters of the individual vessels, the total 
cross-section area of all of each type of vessel considered together, and the pressure 
in these vessels, assuming that the person is lying down so that there is no pressure 
change due to differences in elevation.

▶  Extreme blood pressure  A giraffe’s head can be more than 
2 meters above its heart. If the blood pressure in the brain is greater than zero 
(as it must be), the pressure at the heart must be quite high. A typical blood 
pressure for a resting giraffe is 240/160 mm Hg—a number that would raise 
serious alarms in a human!

Diameter (cm)

Left
ventricle Aorta

2 0.5 0.002 0.0009 0.003 0.5 3

3 20 500 4000 3000 80 7

Arteries Arterioles Capillaries Venules Veins Vena cava Right
atrium

Total area (cm2)

Pressure (kPa)

12

8

4

FIGURE 13.37 Schematic overview of blood flow in the circulatory system.

The numbers in the table are averages from different sources, representing varia-
tions among individuals of different sizes, ages, and levels of physical conditioning. 
The numbers are given to one significant figure; we really can’t claim more preci-
sion. Nonetheless, a few broad trends emerge:

 ■ As we’ve seen, there is only a very small change in pressure across the larger 
arteries. The pressure begins to drop only when the blood enters the smaller arter-
ies and, even more so, the arterioles, where viscosity starts to have a significant 
effect. Most of the pressure drop occurs in these smaller vessels. Changes in the 
size of the small arteries and arterioles have significant effects on blood flow and 
on blood pressure.

 ■ As blood moves from the aorta to the arteries and then to the arterioles, the diam-
eter of the individual vessels decreases but the total area of all of the vessels 
increases. There is a high degree of branching; going from the aorta to the arteri-
oles, the area of an individual vessel decreases by a factor of 1,000,000, but the 
area of all of the vessels considered together increases by a factor of 200. This 
implies that the single aorta eventually branches to 200,000,000 arterioles!

This preserved section of blood vessels 
shows the tremendous increase in number 
and in total area as blood vessels branch 
from large arteries to arterioles. One large 
artery gives rise to thousands of smaller 
vessels.
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PREPARE All of the quantities in the problem are given in the 
proper SI units, so no unit conversions are necessary.

SOLVE We rearrange Equation 13.16 to give the pressure differ-
ence in terms of the flow rate:

 ∆p =
8hLQ

pR4 =
811.3 * 10-3 Pa # s2140 m212.0 * 10-4 m3/s2

p10.0072 m24

 = 9.9  kPa ≈ 10 kPa

This is the pressure difference across the supply line, so the city 
water supply has a pressure of 210 kPa. At the higher flow rate, 
the difference in pressure is

 ∆p =
8hLQ

pR4 =
811.3 * 10-3 Pa # s2140 m216.0 * 10-4 m3/s2

p10.0072 m24

 = 30 kPa

With the toilet and the shower both using water, the pressure 
drops by 30 kPa, so the pressure at the showerhead is

210 kPa - 30 kPa = 180 kPa

ASSESS This is a small but noticeable change in pressure from 
the original situation, exactly as expected.

STOP TO THINK 13.7 A viscous fluid 
flows through the pipe shown. The 
three marked segments are of equal 
length. Across which segment is the 
pressure difference the greatest? BA C

13.7 The Circulatory System 
Once every second, more or less, your heart beats, and the contraction of the cham-
bers of your heart sends blood flowing through your body’s arteries, capillaries, and 
veins. In this section, we’ll use the principles that we’ve learned in earlier sections to 
explain and explore the motion of blood through your circulatory system.
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nurse pumps air into the cuff while using a stethoscope to listen to the flow of blood in 
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FIGURE 13.35 Blood pressure during one 
cycle of a heartbeat.

FIGURE 13.36 Measuring blood pressure.
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Measured at 
the level of 
the heart.

How much difference?
If you raise your hand up, or lower it, 
and measure blood pressure at your 
wrist, how does it change?

Buoyancy

Net upward force

!
F B

Buoyancy Buoyancy

Buoyant 
force Density 

of the 
fluid

Volume 
of fluid 

displaced

It’s a real force.
It exists whenever an object is 

immersed in a fluid.



If the buoyant force is larger than the weight...

ρf > ρo :  floaty
ρo > ρf :  sinky

If an object is more dense than the fluid it is submerged in, it sinks.
If an object is less dense than the fluid it is submerged in, it floats.

Heavy, but Floaty
The envelope of a typical 
hot air balloon has a volume 
of 2500 m3.

Assume that such a balloon 
is flying in Fort Collins, 
where the density of air is 
approximately 1.0 kg/m3.

a) What mass of air does the balloon displace?
b) If heated to the maximum temperature, the air inside 

the balloon has a density of about 80% that of the 
surrounding air. What is the mass of air in the balloon?

c) How much mass can the balloon lift?

Floating in the Dead Sea 
Water density = 1240 kg/m3

Hippos spend much of their lives in water, but amazingly, they don’t swim. They also, despite 
appearances, have very little body fat. The density of a hippo’s body is approximately 1030 
kg/m3, so it sinks to the bottom of the freshwater lakes and rivers it frequents—and then it 
simply walks on the bottom.

A 1500 kg hippo is completely submerged, standing on the bottom of a lake. What is the 
hippo’s apparent weight?

Manatees have about 
7% body fat.

They are very, very lean.

Explain why this is so.

Question:
Taking buoyancy into 

account, is the reading on 
the scale greater than, 
equal to, or less than 
your actual weight?

Submerged in Air

My volume: 70 liters
Mass of air displaced: 70 grams
Buoyant force: 70 grams (2½ oz)

Submerged in 
Water

My mass: 70 kilograms
My volume: 70 liters
Mass of water displaced: 70 kilograms
Bouyant force equals weight force!



Balloon volume: 12 liters
Mass of air displaced: 12 grams
Mass of balloon: 1 g
Mass of helium in balloon: 2 grams
Total lift: 9 grams (⅓ oz)

Balloon volume: 12 liters
Mass of air displaced: 12 grams
Mass of balloon: 1 g
Mass of helium in balloon: 2 grams
Total lift: 9 grams (⅓ oz)

Enough to lift 4 dimes

Pressure Forces The Power of 
Pressure, Part I

3.3 kPa

When you breathe deeply, you pull in 4.0 L of air in about 
3.0 s. This requires a pressure difference of about 4.0 kPa 
between the air in your lungs and the outside air.

If you purse your lips to make a small 
opening of about 0.5 cm in diameter, 
you can blow air outward at a 
surprising 50 m/s. What pressure in the 
lungs does this imply?

Blow out the candles

1.25 kPa

Pressure in Flows Fluid Flow
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nor destroyed within the tube, and there’s no place to store any extra fluid intro-
duced into the tube. If volume V enters the tube during some interval of time ∆t, 
then an equal volume of fluid must leave the tube.

To see the implications of this idea, suppose all the molecules of the fluid in 
 Figure 13.20 are moving to the right with speed v1 at a point where the cross-section 
area is A1 . Farther along the tube, where the cross-section area is A2 , their speed is 
v2 . During an interval of time ∆t, the molecules in the wider section move forward a 
distance ∆x1 = v1 ∆t and those in the narrower section move ∆x2 = v2 ∆t. Because 
the fluid is incompressible, the volumes ∆V1 and ∆V2 must be equal; that is,

 ∆V1 = A1 ∆x1 = A1 v1 ∆t = ∆V2 = A2 ∆x2 = A2 v2 ∆t (13.10)

Dividing both sides of the equation by ∆t gives the equation of continuity:

 v1 A1 = v2 A2 (13.11)

The equation of continuity relating the speed v of an incompressible fluid  
to the cross-section area A of the tube in which it flows

Equations 13.10 and 13.11 say that the volume of an incompressible fluid 
entering one part of a tube or pipe must be matched by an equal volume leaving 
downstream.

An important consequence of the equation of continuity is that flow is faster in 
narrower parts of a tube, slower in wider parts. You’re familiar with this conclu-
sion from many everyday observations. The garden hose shown in FIGURE 13.21a 
squirts water farther after you put a nozzle on it. This is because the narrower open-
ing of the nozzle gives the water a higher exit speed. Water flowing from the faucet 
shown in FIGURE 13.21b picks up speed as it falls. As a result, the flow tube “necks 
down” to a smaller diameter.

The rate at which fluid flows through the tube—volume per second—is ∆V/∆t. 
This is called the volume flow rate Q. We can see from Equation 13.10 that

(a) (b)Reducing the diameter
with a nozzle causes
the speed to increase.

An increasing
speed causes
the diameter
to decrease.

FIGURE 13.21 The speed of the water is 
inversely proportional to the diameter of 
the stream.

 Q =
∆V
∆t

= vA (13.12)

Volume flow rate for liquid moving at speed v through  
a tube of cross-section area A

The SI units of Q are m3/s, although in practice Q may be measured in cm3/s, liters 
per minute, or, in the United States, gallons per minute and cubic feet per minute. 
Another way to express the meaning of the equation of continuity is to say that the 
volume flow rate is constant at all points in a tube.

 

Video Continuity

A garden hose has an inside diameter of 16 mm. The hose can fill 
a 10 L bucket in 20 s.

a. What is the speed of the water out of the end of the hose?
b. What diameter nozzle would cause the water to exit with a 

speed 4 times greater than the speed inside the hose?

STRATEGIZE We are given the volume flow rate; we will use 
this with Equation 13.12 to determine the speed of the flow.

PREPARE The volume flow rate is Q = ∆V/∆t = 110 L2/120 s2 =  
0.50 L/s. To convert this to SI units, recall that 1 L =1000 mL =  
103 cm3 = 10-3 m3. Thus Q = 5.0 * 10-4 m3/s.

Speed of water through a hose
SOLVE a. The speed of the water is

v =
Q
A
=

Q

pr2 =
5.0 * 10-4 m3/s
p10.0080 m22 = 2.5 m/s

b. The quantity Q = vA remains constant as the water flows 
through the hose and then the nozzle. To increase v by a fac-
tor of 4, A must be reduced by a factor of 4. The cross-section 
area depends on the square of the diameter, so the area is 
reduced by a factor of 4 if the diameter is reduced by a factor 
of 2. Thus the necessary nozzle diameter is 8 mm.

ASSESS This seems like a reasonable speed for water through a 
garden hose.

EXAMPLE 13.10 
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Fluid Flow: Bernoulli
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The ∆V>s cancel, and we can rearrange the remaining terms to get Bernoulli’s 
 equation, which relates fluid quantities at two points along a streamline:

◀  Living under pressure  When plaque builds up in major arteries, 
dangerous drops in blood pressure can result. Doppler ultrasound uses sound 
waves to detect the velocity of flowing blood. The image shows the blood 
flow through a carotid artery with significant plaque buildup; yellow indi-
cates a higher blood velocity than red. Once the velocities are known at two  
points along the flow,  Bernoulli’s equation can be used to deduce the 
 corresponding pressure drop.

Pressure p1

2

1

Pressure p2

Fluid density ry1

y2

y
v2

v1
Pressure, speed, and
height at point 2 are
related to c 

cpressure, speed,
and height at
point 1.

(13.13)

p2  +    rv2
2  +  rgy2  =  p1  +    rv1

2  +  rgy1
1
2

1
2

Video What the Physics? Air Bender

STOP TO THINK 13.6 Rank in order, from highest to lowest, the liquid heights h1 to 
h4 in tubes 1 to 4. The airflow is from left to right.

Direction of airflow
Air pump

1
h1 h2 h3 h42 3 4

Equation 13.13, a quantitative statement of the ideas we developed earlier in this 
section, is really nothing more than a statement about work and energy. Using Ber-
noulli’s equation is very much like using the law of conservation of energy. Rather than 
identifying a “before” and “after,” we want to identify two points on a streamline.

Water flows through the pipes shown in FIGURE 13.31. The water’s 
speed through the lower pipe is 5.0 m/s, and a pressure gauge reads 
75 kPa. What is the reading of the pressure gauge on the upper pipe?

Pressure in an irrigation systemEXAMPLE 13.11 

75 kPa

1

2

2.0 m4.0 cm

5.0 m/s

6.0 cm

v2

FIGURE 13.31 The water pipes of an irrigation system.

SOLVE Bernoulli’s equation, Equation 13.13, relates the pres-
sures, fluid speeds, and heights at points 1 and 2. It can be used 
to solve for the pressure p2 at point 2:

 p2 = p1 + 1
2

 rv1 

2 - 1
2

 rv2 

2 + rgy1 - rgy2

 = p1 + 1
2

 r1v1 

2 - v2 

22 + rg1y1 - y22
All quantities on the right are known except v2 , and that is where 
the equation of continuity will be useful. The cross-section areas 
and water speeds at points 1 and 2 are related by

v1 A1 = v2 A2

from which we find

v2 =
A1

A2
 v1 =

r1 

2

r2 

2 v1 =
10.030 m2210.020 m22 15.0 m/s2 = 11.25 m/s

The pressure at point 1 is p1 = 75 kPa + 1 atm = 176,300 Pa. 
We can now use the above expression for p2 to calculate 
p2 = 105,900 Pa. This is the absolute pressure; the pressure 
gauge on the upper pipe is

p2 = 105,900 Pa - 1 atm = 4.6 kPa

ASSESS We find a lower pressure at point 2; this makes sense. 
Reducing the pipe size decreases the pressure because it makes 
v2 7 v1. Gaining elevation also reduces the pressure.

STRATEGIZE We will consider a streamline that goes along the 
middle of the pipe, connecting point 1 in the lower pipe with 
point 2 in the upper pipe. Bernoulli’s equation will allow us to 
find differences in pressure along the flow. We can also use the 
equation of continuity to relate the speed of the flow to the area 
at different points.

PREPARE The density of water is 1000 kg/m3.

Video Bernoulli’s Principle: Venturi Tubes
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Along the flow: A reduction in pressure leads to a higher speed.

Fluid Flow: Bernoulli

Along the flow:
High speed = low pressure
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flow through a carotid artery with significant plaque buildup; yellow indi-
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 corresponding pressure drop.
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Pressure in an irrigation systemEXAMPLE 13.11 
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v2

FIGURE 13.31 The water pipes of an irrigation system.
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When blood passes a segment 
of an artery narrowed by a 
plaque, flow speed must 
increase. Does this lead to an 
increase or decrease of the 
pressure at the narrow spot?

Surface Tension

Water is sticky.
Floating a coin


