
This Week 

Form and Function 
How animals move and work depends on how 
they are built 

This Week: 
Form and Function 

Three topics: 

1. Torque (Leverage) 
2. Oscillations (Pendulums) 
3. Fluids (Size Matters)

#1: Torque

(aka leverage)

Forces make 
things move.

Rotational Kinematics
The spinning roulette wheel isn’t going  
anywhere, but it is moving. This is rotational 
motion.

LOOKING AHEAD ▶▶

Torque
To start something moving, apply a force.  
To start something rotating, apply a torque, 
as this sailor is doing to the wheel.

You’ll learn about angular velocity and other 
quantities we use to describe rotational 
motion.

You’ll see that torque depends on how hard 
you push and also on where you push. A 
push far from the axle gives a large torque.

You’ll learn a version of Newton’s second 
law for rotational motion and use it to solve 
problems.

Rotational Dynamics
The girl pushes on the outside edge of the 
merry-go-round, gradually increasing its 
rotation rate.

Rotational Motion

Design modifications make this 
cyclist and her racing bicycle more 
aerodynamic, which enables her to 
achieve higher speeds. But there are 
less visible modifications that permit 
greater acceleration as well—most 
important, the design of the tires and 
wheels. How do you design bicycle 
wheels to achieve greater acceleration?

  GOAL To understand the physics of rotating objects.

LOOKING BACK ◀◀

Circular Motion
In Chapter 6, you learned to describe 
 circular motion in terms of period, 
 frequency, velocity, and centripetal 
 acceleration.

In this chapter, you’ll learn to use angular 
velocity, angular acceleration, and other 
quantities that describe rotational motion.

STOP TO THINK

As an audio CD plays, the frequency 
at which the disk spins changes. At 
210 rpm, the speed of a point on the 
outside edge of the disk is 1.3 m/s. At 
420 rpm, the speed of a point on the 
outside edge is
A. 1.3 m/s B. 2.6 m/s
C. 3.9 m/s D. 5.2 m/s

au

au

au
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Torques make 
things rotate.

Torque

Force

Distance to the pivot

Pivot

Torque on the thing that pivots 
= Force x Distance to the pivot

The thing that pivots

Force, but no torque.
Force

Pivot

Torque = Force x Distance to the pivot

What is the torque due to a force 
right at the pivot?

Balancing torques

Where is the pivot?
What is the thing that pivots?



Balancing torques

If two people are the same distance 
from the pivot, who goes down, the 
light person or the heavy person?

Balancing torques

If the seesaw is to balance, who needs 
to sit closer to the pivot—the light 

person or the heavy person?

Balancing torques

Explain why this is so using the language of torque.
If the seesaw balances, the torques are equal.

Torque = Force x Distance to the pivot

 Problems 269

 45. || Figure P8.45 shows the 
operation of a garlic press. 
The lower part of the press 
is held steady, and the upper 
handle is pushed down, 
thereby crushing a gar-
lic clove through a screen. 
Approximate distances are 
shown in the figure. If the 
user exerts a 12 N force on 
the upper handle, estimate 
the force on the clove.

 46. ||| Consider a rower in a scull 
as in Figure P8.46. The oars 
aren’t accelerating, and they 
are rotating at a constant speed, 
so the net force and net torque 
on the oars are zero. An oar is  
2.8 m long, and the rower pulls with a 250 N force on the  
handle, which is 0.92 m from the pivot.
a. Assume that the oar touches the water at its very end. What 

is the drag force from the water on the oar? Assume that the 
oar is perpendicular to the boat, and that the force of the 
rower and the drag force are both perpendicular to the oar.

b. Given that both oars are the same, what is the total force  
propelling the boat forward?

 47. || Hold your upper arm vertical 
and your lower arm horizontal 
with your hand palm-down 
on a table, as shown in Figure 
P8.47. If you now push down 
on the table, you’ll feel that 
your triceps muscle has con-
tracted and is trying to pivot 
your lower arm about the 
elbow joint. If a person with 
the arm dimensions shown pushes down hard with a 90 N force 
(about 20 lb), what force must the triceps muscle provide? You 
can ignore the mass of the arm and hand in your calculation.

 48. || If you stand on one foot while holding your other leg up 
behind you, your muscles apply a force to hold your leg in this 
raised position. We can model this situation as in Figure P8.48. 
The leg pivots at the knee joint, and the force that holds the leg 
up is provided by a tendon attached to the lower leg as shown. 
Assume that the lower leg and the foot have a combined mass 
of 4.0 kg, and that their combined center of gravity is at the 
center of the lower leg.
a. How much force must the tendon exert to keep the leg in this 

position?
b. As you hold your leg in this position, the upper leg exerts a 

force on the lower leg at the knee joint. What are the magni-
tude and direction of this force?

5.0
Distance from pivot (cm)

7.5 10.0 12.52.5

FIGURE P8.45 

 49. || If you hold your arm outstretched with palm upward, as in 
Figure P8.49, the force to keep your arm from falling comes 
from your deltoid muscle. The arm of a typical person has mass 
4.0 kg and the distances and angles shown in the figure.
a. What force must the deltoid muscle provide to keep the arm 

in this position?
b. By what factor does this force exceed the weight of the arm?

30 cm
2.4 cm

Triceps

FIGURE P8.47 

FIGURE P8.46 

50 cm

5.0 cm

The tendon provides
the torque to raise
the lower leg.

FIGURE P8.48 

15°

17 cm

38 cm

Deltoid

FIGURE P8.49 

9.0 cm

4.0 cm

(a) (b)

FIGURE P8.50 

 50. ||| Dogs—like many animals—stand and walk on their toes. A 
photo of the rear foot of a dog is shown in Figure P8.50a; Fig-
ure P8.50b shows the bones of the leg and foot along with rel-
evant distances. The colored element corresponds to your foot, 
and the connection with the leg corresponds to your ankle. The 
Achilles tendon pulls on the end of the foot, along a line 4.0 cm 
from the ankle. What is the tension in the tendon if a 20 kg dog 
is supporting ¼ of its weight on one rear foot?

General Problems

 51. |||| A 3.0-m-long rigid beam 
with a mass of 100 kg is 
supported at each end, as 
shown in Figure P8.51. 
An 80 kg student stands 
2.0 m from support 1. 
How much upward force 
does each support exert 
on the beam?

 52. ||| An 80 kg construction worker sits down 2.0 m from the end 
of a 1450 kg steel beam to eat his lunch, as shown in Figure 
P8.52. The cable supporting the beam is rated at 15,000 N. 
Should the worker be worried?

Support 1

3.0 m

2.0 m

Support 2

FIGURE P8.51 

6.0 m

30°

Cable

FIGURE P8.52 

Watch Video Solution  Problem 8.51
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Mechanical 
Advantage

The force on the 
garlic clove is 5x 
the force exerted 

by the hand.

Why?

Look how 
close the 
tendon is to 
the joint.

36

Internal 
forces from 
muscles vs. 
externally 

applied 
forces

Experiment
Change the 

position of the 
band. How does 

the force required 
change?

Negative 
Mechanical 
Advantage

The force provided 
by each quadriceps 
for this stance is 
more than 5x the 
person’s weight



The Curl

If you lift a 10 pound weight, 
what is the force provided 
by your biceps?

36

Carrying Groceries

How does this help?

12 cm 6 cm

A man (160 lb) stands on the 
toes of one foot.

What is the force provided by 
the Achilles tendon? 

Question
Every joint in your 
body has negative 

mechanical 
advantage.

Are there any 
beneficial tradeoffs?

Range of Motion
Speed of Motion

Which one is a digger, which one is a jumper?

Jumping Digging



Pronghorn Mole

Question
What’s the most 

problematic part of 
the human 
skeleton?

Bending at the Waist A 70 kg man bends forward 
at the waist; the gravitational 
torque is balanced by 
muscles along the back.
If you assume that 55% of 
his weight is in his torso, and 
the center of gravity of his 
torso is 43 cm from his hips, 
and the moment arm for his 
spinal muscles is 0.060 m, 
what is the force provided 
by the muscles?

55% of weight

Bending at the 
Waist

Man’s weight: 
690 N (150 lb)
Muscle force:

1370 N (310 lb)
200+% of weight

Question
What is the biggest muscle in your body?

Question
You need to crack a nut without using any tool, or without 

stepping on it. What joint in your body do you use?

Bite force

 8.5 Forces and Torques in the Body 261

This force acts 35 cm from the pivot. The force in the joint acts at 
the pivot, so it does not contribute a torque.

SOLVE The tension in the tendon tries to rotate the arm counter-
clockwise, so it produces a positive torque. The torque due to the 
barbell, which tries to rotate the arm in a clockwise direction, is neg-
ative. For static equilibrium, the magnitudes of the two torques must 
be equal. Given the forces and distances we identified, we can write

T14.0 cm2 = 1540 N2135 cm2
We can solve this equation for the tension in the tendon. The dis-
tances appear in a ratio, so the units cancel; there is no need for 
unit conversion:

T = 1540 N2 35 cm
4.0 cm

= 4700 N

The tendon tension comes from the muscles, which must provide 
a force nearly 9 times the weight lifted! For this lift, the biceps in 
the arms are pulling with a combined force of about 1 ton, which 
makes this impressive lift seem even more amazing.

The tendon sustains a very large tension force. The maximum 
possible tendon tension is fixed by the cross-section area of the 
tendon and the tensile strength given in Table 8.4:

T max = 1100 * 106 N/m2211.3 * 10-4 m22 = 13,000 N

The required tension for the lift is 36% of the maximum possible 
tension.

ASSESS The large value for the tendon tension makes sense, given 
the problem statement, as does the fact that the tension is a signifi-
cant fraction of what the tendon can support. The lift is possible, but 
it’s nearing the limit of what the tissues of the body can do.

Lifting muscle
(biceps)

Tendon
Elbow joint

4.0 cm

35 cm

FIGURE 8.29 The arm lifting a barbell.

These forces cause
torques about the elbow.

Ftendon

Fjoint Fbarbell
35 cm

4.0 cm

u

u
u

FIGURE 8.30 A simplified model of the arm and weight.

Let’s look at one more example, the motion of the jaw. A typical person can gen-
erate a bite force of 1200 N at the second molars, a force that is probably greater 
than the person’s weight. The masseter muscle that provides most of the force to 
close your jaw isn’t a particularly large muscle, but its attachment is quite favorable 
for providing large forces, as FIGURE 8.31a shows. The force vector shows the approxi-
mate line of force of the masseter muscle. The line of the force is about  
5 cm from the pivot, compared to about 7 cm from the molars. This means that the 
force at the molars is nearly equal to the full force of the muscle. This is a dramatic 
difference from the previous examples. There’s a trade-off, though—you may be 
capable of great bite strength, but your jaw has a very limited range of motion and 
you have limited bite speed. FIGURE 8.31b shows a dog jaw along with the pivot and 
the approximate line of force of the masseter. The prominent canine teeth at the front 
of the jaw are much farther from the pivot than the muscle, so the canine teeth are 
well adapted for rapid, slashing bites. Cats have much shorter jaws than dogs. What 
does this imply about their bite speed and force? Making light work of moving   

The tendon force is so large in Example 8.12 
because the weight is supported much farther 
from the elbow than the point where the 
tendon attaches. If the weight is supported 
closer to the elbow, the downward torque of 
the weight is much less, reducing the neces-
sary tendon and muscle force. In the picture, 
two people are using lifting straps to carry a 
heavy appliance. The straps hang very close 
to the elbow, so the required muscle force to 
support the weight is much less than it would 
otherwise be.

(a) (b)

Jaw pivot Jaw pivot

FIGURE 8.31 Jaw motion in a human and a dog.
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Why do dogs have long snouts while cats do not? Rapid MotionLots of Force

Why are humans so slow? Image credit: Skunk Bear/NPR

Oscillations
Motion that
repeats.
Again and again.

Masses on springs
Pendulums

The pendulum

440  CHA P T E R  14 Oscillations

STOP TO THINK 14.1  Two oscillating systems have periods T1 and T2 , with T1 6 T2. 
How are the frequencies of the two systems related?

 A. f1 6 f2      B. f1 = f2      C. f1 7 f2

Oscillatory Motion
Let’s make a graph of the motion of the marble in a bowl, with positions to the right 
of equilibrium positive and positions to the left of equilibrium negative. FIGURE 14.4 
shows a series of “snapshots” of the motion and the corresponding points on the 
graph. This graph has the form of a cosine function. A graph or a function that has 
the form of a sine or cosine function is called sinusoidal. A sinusoidal oscillation is 
called simple harmonic motion, often abbreviated SHM.

FIGURE 14.4 Constructing a position-versus-time graph for a marble rolling in a bowl.

The period T is the time to 
complete one oscillation.

t0

T

-

+

Position

Released at the right
side of the bowl

Passing through the
equilibrium position

At the left side,
reversing direction

Going the other way
through equilibrium

One oscillation done,
starting the next

Examples of simple harmonic motion

Oscillating system   Related real-world example

Mass on a spring

m

k

The mass oscillates back  
and forth due to the  
restoring force of the  
spring. The period  
depends on the mass and  
the stiffness of the spring.

Vibrations in the ear
Sound waves entering the ear  
cause the oscillation of a  
membrane in the cochlea. The  
vibration can be modeled as a 
mass on a spring. The period  
of oscillation of a segment of the  
membrane depends on  
mass (the thickness of the  
membrane) and stiffness (the  
rigidity of the membrane).

Pendulum

L

The mass oscillates back  
and forth due to the  
restoring gravitational  
force. The period  
depends on the length of  
the pendulum and the  
free-fall acceleration g.

Motion of legs while walking

The motion of a walking  
animal’s legs can be modeled  
as pendulum motion. The  
rate at which the legs swing  
depends on the length of  
the legs and the free-fall  
acceleration g.

A marble rolling in the bottom of a bowl undergoes simple harmonic motion, as 
does a car bouncing on its springs. SHM is very common, but most cases of SHM  
can be modeled as one of two simple systems: a mass oscillating on a spring or a  
pendulum swinging back and forth.Class Video
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Experiment
How does the length of the pendulum affect the period? 

How does the amplitude of the pendulum affect the period?

Period
Time for one swing

Amplitude
How far the pendulum 

swings to the side

Swinging 
Arms And 
Legs Are 

Pendulums

Your legs are pendulums.
Your stride frequency doesn’t vary much.

Walking faster means a larger amplitude—you take longer strides.

Experiment
Walking quickly, take 10-20 steps, and measure the time.
Walking slowly, take 10-20 steps, and measure the time.



How does adding weight to your ankles 
change the natural period of your legs?

 11.2 Energy in the Body  363

Energy Storage
If the energy that the body gets from food is not used, it is stored. A small amount of 
energy needed for immediate use is stored as ATP. A larger amount of energy is 
stored as chemical energy of simple carbohydrates in muscle tissue and the liver. A 
healthy adult might store 400 g of these carbohydrates, which is a little more carbo-
hydrate than is typically consumed in one day.

If the energy input from food continuously exceeds the energy outputs of the 
body, this energy will be stored in the form of fat under the skin and around the 
organs. From an energy point of view, gaining weight is simply explained!

The body stores about 400 g of carbohydrates. Approximately 
how far could a 68 kg runner travel on this stored energy?

STRATEGIZE This is a Type 2 problem; we can’t easily quantify 
what you get, so we’ll use the value from Table 11.4 to determine 
the power. We will use the data in Table 11.1 to determine the 
energy in the carbohydrate stored in the body. From the energy 
available and the rate at which the body uses this energy, we can 
determine how long the energy will last, and then we will calcu-
late the distance the runner can travel.

PREPARE Table 11.1 gives a value of 17 kJ per g of carbohydrate. 
The 400 g of carbohydrates in the body contain an energy of

Echem = 1400 g2117 * 103 J/g2 = 6.8 * 106 J

SOLVE Table 11.4 gives the power used in running at 15 km/h 
as 1150 W. The time that the stored chemical energy will last at 
this rate is

How far can you run? EXAMPLE 11.8 

∆t =
∆Echem

P
=

6.8 * 106 J
1150 W

= 5.91 * 103 s = 1.64 h

And the distance that can be covered during this time at 15 km/h is

∆ x = v ∆t = 115 km/h211.64 h2 = 25 km

to two significant figures.

ASSESS A marathon is longer than this—just over 42 km. Even 
with “carbo loading” before the event (eating high-carbohydrate 
meals), many marathon runners “hit the wall” before the end of 
the race as they reach the point where they have exhausted their 
store of carbohydrates. Given that this is a problem for long- 
distance runners, our answer makes sense. But if runners deplete 
their carbohydrate reserves, how can they finish the race? The 
body has other energy stores (in fats, for instance), but the rate 
that they can be drawn on is much lower.

Energy and Locomotion
When you walk at a constant speed on level ground, your kinetic energy is constant. 
Your potential energy is also constant. So why does your body need energy to walk? 
Where does this energy go?

We use energy to walk because of mechanical inefficiencies in our gait. FIGURE 11.7 
shows how the speed of your foot typically changes during each stride. The kinetic 
energy of your leg and foot increases, only to go to zero at the end of the stride. The 
kinetic energy is mostly transformed into thermal energy in your muscles and in 
your shoes. This thermal energy is lost; it can’t be used for making more strides.

This inefficiency is a process limitation. It’s possible to do better. Footwear can 
be designed to minimize the loss of kinetic energy to thermal energy. A spring in the 
sole of the shoe can store potential energy, which can be returned to kinetic energy 
during the next stride. Such a spring will make the collision with the ground more 
elastic. We saw in Chapter 10 that the tendons in the ankle store a certain amount of 
energy during a stride; very stout tendons in the legs of kangaroos store energy even 
more efficiently. Their peculiar hopping gait is quite efficient at high speeds.

Foot
speed
v (m/s)

t (s)
0 1.51.00.5

As you begin 
a stride, the 
velocity of 
your foot 
increases.

Halfway through a stride, 
your foot is at a maximum 
speed (and maximum kinetic 
energy). At the end of 

the stride, your 
foot stops 
momentarily; 
the kinetic 
energy is 
“lost.”

0

1

2

3

FIGURE 11.7 Human locomotion analysis.

▶  Where do you wear the weights?  If you wear a backpack with 
a mass equal to 1% of your body mass, your energy expenditure for walking 
will increase by 1%. But if you wear ankle weights with a combined mass of 
1% of your body mass, the increase in energy expenditure is 6%, because you 
must repeatedly accelerate this extra mass. If you want to “burn more fat,” 
wear the weights on your ankles, not on your back! If you are a runner who 
wants to shave seconds off your time in the mile, you might try lighter shoes.

STOP TO THINK 11.2 A runner is moving at a constant speed on level ground. Chem-
ical energy in the runner’s body is being transformed into other forms of energy. 
Most of the chemical energy is transformed into

 A. Kinetic energy. B. Potential energy. C. Thermal energy.
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As you walk, your body moves 
up and down through a total 
distance of about 4 inches.

 6.2 Dynamics of Uniform Circular Motion 183

The friction force provides the necessary centripetal acceleration not only for 
cars turning corners, but also for bicycles, horses, and, as we saw in Example 6.6, 
humans. The cyclists in FIGURE 6.12 are going through a tight turn; you can tell by 
how they lean. The road exerts both a vertical normal force and a horizontal friction 
force on their tires. A vector sum of these forces points at an angle. The cyclists lean 
to the side so that the sum of the road forces points along the line of their bikes and 
their bodies; this keeps them in balance. The horses in the photo that opened the 
chapter are leaning into the turn for a similar reason.

Maximum Walking Speed 
Humans and other two-legged animals have two basic gaits: walking and running. 
At slow speeds, you walk. When you need to go faster, you run. Why don’t you just 
walk faster? There is an upper limit to the speed of walking, and this limit is set by 
the physics of circular motion.

Think about the motion of your body as you take a walking stride. You put one 
foot forward, then push off with your rear foot. Your body pivots over your front 
foot, and you bring your rear foot forward to take the next stride. As you can see in 
FIGURE 6.13a, the path that your body takes during this stride is the arc of a circle. In 
a walking gait, your body is in circular motion as you pivot on your forward 
foot.

A force toward the center of the circle is required for this circular motion, as 
shown in Figure 6.13. FIGURE 6.13b shows the forces acting on the woman’s body 
during the midpoint of the stride: her weight, directed down, and the normal force of 
the ground, directed up. Newton’s second law for the x-axis is

aFx = w - n =
mv2

r
Because of her circular motion, the net force must point toward the center of the circle, 
or, in this case, down. In order for the net force to point down, the normal force must 
be less than her weight. Your body tries to “lift off ” as it pivots over your foot, decreas-
ing the normal force exerted on you by the ground. The normal force becomes smaller 
as you walk faster, but n cannot be less than zero. Thus the maximum possible walking 
speed vmax occurs when n = 0. Setting n = 0 in Newton’s second law gives

w = mg =
mvmax 

 2

r
Thus

 vmax = 1gr (6.7)

The maximum possible walking speed is limited by r, the length of the leg, and g, 
the free-fall acceleration. This formula is a good approximation of the maximum 
walking speed for humans and other animals. Giraffes, with their very long legs, can 
walk at high speeds. Animals such as mice with very short legs have such a low 
maximum walking speed that they rarely use this gait.

For humans, the length of the leg is approximately 0.7 m, giving vmax≈
2.6 m/s ≈ 6 mph. You can walk this fast, though it becomes energetically unfavorable 
to walk at speeds above 4 mph. Most people make a transition to a running gait at about 
this speed.

where u is the angle at which the road is banked, and we’ve 
assumed that the car is traveling at the correct speed v. From the 
y-equation,

n =
w

cos u
=

mg
cos u

Substituting this into the x-equation and solving for v give

 a mg
cos u

b  sin u = mg tan u =
mv2

r

v = 2rg tan u = 14 m/s

ASSESS This is ≈30 mph, a reasonable speed. Only at this exact 
speed can the turn be negotiated without reliance on friction forces.

FIGURE 6.12 Road forces on a cyclist 
leaning into a turn.

vu

The circular 
motion requires a 
force directed 
toward the center 
of the circle.

During each stride, her hip
undergoes circular motion.

The radius of the 
circular motion is the 
length of the leg from 
the foot to the hip.

(a) Walking stride

r

Fnet
u

Fnet

The x-axis points 
down, toward the 
center of the circle.

(b) Forces in the stride
Side view
(same as photo)

y

x

u

u

u

n

w

FIGURE 6.13 Analysis of a walking stride.
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Section 14.5 Pendulum Motion

 27. || A mass on a string of unknown length oscillates as a pendu-
lum with a period of 4.00 s. What is the period if
a. The mass is doubled?
b. The string length is doubled?
c. The string length is halved?
d. The amplitude is halved?
Parts a to d are independent questions, each referring to the ini-
tial situation.

 28. | The mass in a pendulum clock completes one full back-and-
forth oscillation in 1.00 s. What is the length of the rod?

 29. ||| A 200 g ball is tied to a string. It is pulled to an angle of 
8.00° and released to swing as a pendulum. A student with a 
stopwatch finds that 10 oscillations take 12.0 s. How long is the 
string?

 30. || The free-fall acceleration on the moon is 1.62 m/s 2. What is 
the length of a pendulum whose period on the moon matches 
the period of a 2.00-m-long pendulum on the earth?

 31. | Astronauts on the first trip to Mars take along a pendulum 
that has a period on earth of 1.50 s. The period on Mars turns 
out to be 2.45 s. Use this data to calculate the Martian free-fall 
acceleration.

 32. ||| A building is being knocked down with a wrecking ball, 
which is a big metal sphere that swings on a 10-m-long 
cable. You are (unwisely!) standing directly beneath the 
point from which the wrecking ball is hung when you 
notice that the ball has just been released and is swinging 
directly toward you. How much time do you have to move 
out of the way?

 33. ||| Interestingly, there have been several studies using cadavers 
to determine the moment of inertia of human body parts by let-
ting them swing as a pendulum about a joint. In one study, the 
center of gravity of a 5.0 kg lower leg was found to be 18 cm 
from the knee. When pivoted at the knee and allowed to swing, 
the oscillation frequency was 1.6 Hz. What was the moment of 
inertia of the lower leg?

 34. ||| A child on a swing set swings back and forth with a period of 
3.3 s and an amplitude of 25°. What is the maximum speed of 
the child as she swings?

 35. ||| You and your friends find a rope that hangs down 15 m from 
a high tree branch right at the edge of a river. You find that you 
can run, grab the rope, swing out over the river, and drop into 
the water. You run at 2.0 m/s and grab the rope, launching 
yourself out over the river. How long must you hang on if you 
want to drop into the water at the greatest possible distance 
from the edge?

 36. ||| In a study designed to better understand the dynamics 
of walking, a subject stood with one leg at rest, and swung 
the other leg at various frequencies. The metabolic power 
expended, in watts per kilogram of body weight, is shown in 
Figure P14.36. Estimate the length of this subject’s legs.

P (W/kg)

f (Hz)

1.5

1.0

1.11.00.90.80.70.60.50

2.0

0.5

0
FIGURE P14.36

 37. |||| An elephant’s legs have a rea-
sonably uniform cross section 
from top to bottom, and they 
are quite long, pivoting high 
on the animal’s body. When an 
elephant moves at a walk, it uses 
very little energy to bring its legs 
forward, simply allowing them to swing like pendulums. For fluid 
walking motion, this time should be half the time for a complete 
stride; as soon as the right leg finishes swinging forward, the ele-
phant plants the right foot and begins swinging the left leg forward.
a. An elephant has legs that stretch 2.3 m from its shoulders to 

the ground. How much time is required for one leg to swing 
forward after completing a stride?

b. What would you predict for this elephant’s stride frequency? 
That is, how many steps per minute will the elephant take?

 38. ||| In a science museum, you may have seen a Foucault pen-
dulum, which is used to demonstrate the rotation of the earth. 
In one museum’s pendulum, the 110 kg bob swings from a 
15.8-m-long cable with an amplitude of 5.0°.
a. What is the period of this pendulum?
b. What is the bob’s maximum speed?
c. What is the pendulum’s maximum kinetic energy?
d. When the bob is at its maximum displacement, how much 

higher is it than when it is at its equilibrium position?

Section 14.6 Damped Oscillations

 39. | The amplitude of an oscillator decreases to 36.8% of its ini-
tial value in 10.0 s. What is the value of the time constant?

 40. || A physics department has a Foucault pendulum, a long-
period pendulum suspended from the ceiling. The pendulum 
has an electric circuit that keeps it oscillating with a constant 
amplitude. When the circuit is turned off, the oscillation ampli-
tude decreases by 50% in 22 minutes. What is the pendulum’s 
time constant? How much additional time elapses before the 
amplitude decreases to 25% of its initial value?

 41. || Calculate and draw an accurate displacement graph from 
t = 0 s to t = 10 s of a damped oscillator having a frequency of 
1.0 Hz and a time constant of 4.0 s.

 42. || A small earthquake starts a lamppost vibrating back and forth. 
The amplitude of the vibration of the top of the lamppost is 6.5 
cm at the moment the quake stops, and 8.0 s later it is 1.8 cm.
a. What is the time constant for the damping of the oscillation?
b. What was the amplitude of the oscillation 4.0 s after the 

quake stopped?
 43. ||| The common field cricket makes its characteristic loud 

chirping sound using a specialized vibrating structure in its 
wings. The motion of this structure—and the sound intensity 
that it produces—can be modeled as a damped oscillation. The 
sound intensity of such a cricket is shown in Figure P14.43.
a. What is the frequency of the oscillations?
b. What is the time constant for the decay of these oscillations?

t (ms)-A

A

0

Intensity

6543210FIGURE P14.43
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An elephant only moves up and 
down by about ½ inch.

This makes elephants very efficient walkers.

Horses are bobbleheads.
This makes them more efficient.

You can put the 
up and down 

motion to use.

Or you can store the energy to increase efficiency.
Sheep are bouncy.



Two legs, 
two gaits.

Power

Speed

Transition
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take longer strides, changing the amplitude but not the frequency. At some point a 
limit is reached, and you use another gait—you start to run.

As we saw in the photo that opens the chapter, gibbons move through the forest 
canopy with a hand-over-hand swinging motion called brachiation. The body swings 
under a pivot point where a hand grips a tree branch, a clear example of pendulum 
motion. A brachiating ape will increase its speed by taking bigger swings. But, just 
as for walking, at some point a limit is reached, and gibbons use a different gait, 
launching themselves from branch to branch through the air.

STOP TO THINK 14.6 A pendulum clock is made with a metal rod. It keeps perfect 
time at a temperature of 20°C. At a higher temperature, the metal rod lengthens. 
How will this change the clock’s timekeeping?

A. The clock will run fast; the dial will be ahead of the actual time.
B. The clock will keep perfect time.
C. The clock will run slow; the dial will be behind the actual time.

How do you hold your arms?  You 
maintain your balance when walking or run-
ning by moving your arms back and forth 
opposite the motion of your legs. You hold 
your arms so that the natural period of their 
pendulum motion matches that of your legs. 
At a normal walking pace, your arms are 
extended and naturally swing at the same 
period as your legs. When you run, your gait 
is more rapid. To decrease the period of the 
pendulum motion of your arms to match, you 
bend them at the elbows, shortening their 
effective length and increasing the natural 
frequency of oscillation. 14.6 Damped Oscillations

A real pendulum clock must have some energy input; otherwise, the oscillation of 
the pendulum would slowly decrease in amplitude due to air resistance. If you strike 
a bell, the oscillation will soon die away as energy is lost to sound waves in the air 
and dissipative forces within the metal of the bell.

Unless energy is continually added to an oscillator, its amplitude will decrease—
sometimes very slowly, but other times quite quickly—as its mechanical energy is 
transformed into the thermal energy of the oscillator and its environment. An oscil-
lation that runs down and stops is called a damped oscillation.

For a pendulum, the main energy loss is due to air resistance, which we called the 
drag force in Chapter 4. When we learned about the drag force, we noted that it  
depends on velocity: The faster the motion, the bigger the drag force. For this rea-
son, the decrease in amplitude of an oscillating pendulum will be fastest at the start 
of the motion. For a pendulum or other oscillator with modest damping, we end up 
with a graph of motion like that in FIGURE 14.23a. The maximum displacement, xmax , 
decreases with time. As the oscillation decays, the rate of the decay decreases; the 
difference between successive peaks is less.

If we plot a smooth curve that connects the peaks of successive oscillations (we 
call such a curve an envelope), we get the dashed line shown in FIGURE 14.23b. It’s pos-
sible, using calculus, to show that xmax decreases with time as

 xmax 1t2 = Ae-t/t (14.30)

where e ≈ 2.718 is the base of the natural logarithm and A is the initial amplitude. 
This steady decrease of xmax with time is called an exponential decay.

The constant t (lowercase Greek tau) in Equation 14.30 is called the time 
 constant. After one time constant has elapsed—that is, at t = t—the maximum dis-
placement xmax has decreased to

xmax 1at t = t2 = Ae-1 =
A
e

≈ 0.37A

In other words, the oscillation has decreased after one time constant to about 37% of 
its initial value. The time constant t measures the “characteristic time” during which 
damping causes the amplitude of the oscillation to decay away. An oscillation that 
decays quickly has a small time constant, whereas a “lightly damped” oscillator, 
which decays very slowly, has a large time constant.

t

x

0

-A

A

Initially, there is a large difference
in the heights of successive peaks.

At later times, this
difference is much smaller.

∆xmax

∆xmax

(a)

t

x

0

A/e

-A

A
A graph of xmax as a function of
time is an exponential decay.

The time constant t is the time for
the maximum displacement to
decay to 1/e of its initial value.

t

xmax(t)  =  Ae-t /t

(b)

FIGURE 14.23 The motion of a damped 
oscillator.
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Why do you move your legs / hold your arms this way?

Walk

Trot

Gallop / Canter

Four legs, three gaits.

Power

Speed

Transitions

#3: Fluids

i.e. Size Matters

The stickiness of 
water matters 
more and more 
at smaller and 
smaller scales.

Stickiness is a surface effect.
Weight is a volume effect.

Surface area scales as r2.

Volume scales as r3.

10x bigger, 1000 times the mass but 
only 100 times the surface area.



Air isn’t 
sticky at all. 
Drag is simply a 

matter of pushing 
air out of the way 

as you move.

Drag force

!
D

Direction
Opposite motion

Size
Proportional to area
Proportional to the 

square of the speed

Going 2x as 
fast means 4x 
the force and 
8x the power

Terminal Speed

After a certain point, speed is constant.

!
D

!w

1
4 ρAv

2 = mg

v ∝ m
A

m ∝ l 3

A ∝ l2

v ∝ l

Scaling Skydiving, Man & Mouse
A man jumps from an airplane and falls with his body horizontal. He holds his arms 
and legs tight to his body as he falls. What is his terminal velocity? Assume the 75 kg 
skydiver’s body has dimensions 1.8 m long, 0.40 m wide.

Now, repeat the calculation for a mouse. Assume the mouse has a mass of 20 g and is 
7 cm long and 3 cm wide. 

100 mph 25 mph

16 times the energy More robust skeleton

This doesn’t 
end well for a 
human, but the 
mouse is fine.

Small animals 
aren’t afraid 
of heights.


